a2 United States Patent

US009460694B2

10) Patent No.: US 9,460,694 B2

i i : .
Minamitaka 45) Date of Patent Oct. 4, 2016
(54) AUTOMATIC COMPOSITION APPARATUS, 5,155,286 A * 10/1992 Saito G10H 1/0008
AUTOMATIC COMPOSITION METHOD AND 84/611
STORAGE MEDIUM 5,182,414 A * 1/1993 Takahashi G10H 1/0041
. 84/634
(71) Applicant: CASIO COMPUTER CO., LTD., 5451709 A * 9/1995 Minamitaka G10H 1/0025
Shibuya-ku, Tokyo (IP) 84/609
(72) Inventor: Junichi Minamitaka, Kokubunji (JP) 5,939,654 A % 8/1999 Anada ... Goii /1350/ (7)02
(73) Assignee: CASIO COMPUTER CO., LTD., 6,395,970 B2 5/2002 Aoki
Tokyo (JP) 6,403,870 B2 6/2002 Aoki
(*) Notice: Subject to any disclaimer, the term of this 2002/0007720 AL* 12002 AOKi woooiovr G10H éﬁ‘o/gég
paterlt 15 eXtended or adJuSted under 35 2002/0007721 Al 3k 1/2002 AOkl """""""""""""" GIOH 1/0025
U.S.C. 154(b) by 0 days. 34/613
21) Appl. No.: 14/855,048 2002/0011145 Al* 1/2002 Aokicccoevnnnn. G10H 1/0025
(21) App)
(22) Filed: Sep. 15, 2015 84/609
(65) Prior Publication Data FOREIGN PATENT DOCUMENTS
US 2016/0148605 Al May 26, 2016 1P 10105169 A 4/1998
: t ot P Jp 2002032078 A 1/2002
(30) Foreign Application Priority Data P 2002032079 A 1/2002
NOV. 20, 2014 (IP) weoovooeeeoeeeere e 2014-235235 F 2002032080 A 1/2002
(51) Int. CL * cited by examiner
A63H 5/00 (2006.01)
G04B 13/00 (2006.01) . .
G10I 7/00 (2006.01) Primary Examiner — Jeffrey Donels
G10H 1/00 (2006.01) (74) Attorney, Agent, or Firm — Holtz, Holtz & Volek PC

(52) US.CL
CPC ... G10H 1/0025 (2013.01); G10H 2210/111
(2013.01); GI0H 2210/141 (2013.01); G10H
2220/015 (2013.01); GI10H 2240/131

(2013.01)

(58) Field of Classification Search
CPC ..o G10H 1/0025; G10H 2210/141,
G10H 2240/131; G10H 2210/111; G10H
2220/015
USPC ittt 84/609

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,926,737 A * 5/1990 Minamitaka G10H 1/0025
84/611
4,982,643 A * 1/1991 Minamitaka G10H 1/0025
706/902

(57) ABSTRACT

An automatic composition apparatus includes a processing
unit. The processing unit performs a receiving process of
receiving a phrase including a plurality of note data items as
a received motif and receiving a type of the phrase, a
retrieving process of retrieving a phrase set from a phrase set
database and a melody generating process of generating a
melody based on the retrieved phrase set. The phrase set
includes phrases having the same type as the received type
and having relatively high matching levels for the received
motif. The phrase set database stores a plurality of phrase
sets each of which is a combination of a plurality of phrases
of different types.

11 Claims, 31 Drawing Sheets

i xeysoarp | [~101

|
---------- 4 CHORD

MOTIF
INPUT UNIT RULEDB 106
A i —_—
=L 104

102 PHRASE 105
SETDB
1012 PROGRESSION GENERATING [+
PRENEAN SELECTING UNIT UNIT !
| voice i_
{INPUTUNIT [T "3

MELODY

———————————

No. 0 CHORD

UNIT |

B MELODY) |
=5

' i
pa—a| T | PROGRESSION CANDIDATE |
| NOTE i_;:(AMELoov). | INDICATION DATAITEM |
H
| NPUTUNT ;|4 iviories | i 1 CHO !

I | PROGRESSION CANDIDATE |
i !
7
ot

| lo. 2 CHORD i
| PROGRESSION CANDIDATE |
| __INDICATION DATAITEM |

!
03— _ ACCOMPANIMENT/ 109
CHORD-PROGRESSION
0B

US 9,460,694 B2

Sheet 1 of 31

Oct. 4, 2016

U.S. Patent

1INN e

NOISSIHOO0™d-QHOHD

:
| ONIONQOYdY
| INNOSIVISTIY

LINN

¥y

1INN

ONILYHANID

AJOTIN

ad

/LNININYAWODDV €0l

\
S0l

3

60
i
|l W3LIVLvaNOILYOIONI |}
|| LYIONYD NOISSTDO0Y |1 {iniiii—
H QIOHO Z ON I HACHETEE
ittt ——| i1 OdILOW {~--80l
W31 YLV NOLLYOIANT | lioooooooooo !
| 3LYAIONYD NOISSFHO0Yd || HAGGETES N
} QIOHDVON _____i! {1 BALON T NA LnaN |
O G S | [—— -1 [
1 3L VLV NOILYOIONI 1! HACETR _ JlON |
|| AUYIONYO NOISSIMO0Md ! IREICUEH | v
_ 0 T “1| e-101
oo AR | JUOW LNdNI 22l ~
1
| 1 LINN LNdNI |
| 30100 !
LINN ONILOT13S \-mormmo- /
NOISSTHD0Yd N-::
-aoHo | || - “
)
ey <] N mﬁ@%mﬁ@ “
3SVYHd 20l oL L0l ~ r|||\. |||||)
D 110}
901 ﬁ u LINN LNNI
80 31Ny | ilow

US 9,460,694 B2

Sheet 2 of 31

Oct. 4, 2016

U.S. Patent

v

v

A 4

v

L

v

L

v

ONIONT

Elh
“431NI

NOIL3Nd
-“O41NI

JTVDS ANV A3 (6)
a¥OHD (1)

INFNINYIINODOYV (3)

NOILYOOT NOILYYINTD AQOTAN (P)
2 4110W 40 NOILYD01 LNdNI (9)

g 41LOW 40 NOILYD01 LndNI {a)

V¥ 4ILOW 40 NOILY20T 1ndNI (B)

¢ 9ld

US 9,460,694 B2

Sheet 3 of 31

Oct. 4, 2016

U.S. Patent

Jolewn)

Jouiwwg

dofews) YOS ANV AN

rd|

£
<

w3

74|

5] QYOHD
 NOISSTHO0Md QHOHD
| 2 ON

Jofew! FTYOS ANV AIN

0]

£
o

E<_ QYOHD
1 NOISSTUDO0Ud QHOHD
! | ON
Jofewd | I¥OS ANY AIN

9]

E
o

. Ry e P

O_ J4OHD
1 NOISS390dd QH4OHD

' 0 ON
g€ 9ld

™~

N1

e

MmN

N1

ve Old

U.S. Patent Oct. 4, 2016 Sheet 4 of 31 US 9,460,694 B2

FIG. 4A

No. 0 NOTE DATAITEM
No. 1 NOTE DATA ITEM

END

FIG. 4B

TIME
LENGTH
STRENGTH
PITCH

U.S. Patent

FIG. 5A

Oct. 4, 2016 Sheet 5 of 31 US 9,460,694 B2

No. 0 CHORD PROGRESSION DATA ITEM/MIDI DATA ITEM
FOR ACCOMPANIMENT/MUSIC STRUCTURE DATA ITEM

No. 1 CHORD PROGRESSION DATA ITEM/MIDI DATA ITEM
FOR ACCOMPANIMENT/MUSIC STRUCTURE DATA ITEM

END

FIG. 5B

No. 0 CHORD DATA ITEM

No. 1 CHORD DATA ITEM

END

FIG. 5C

TIME

KEY

SCALE

FIG. 5D

TIME

ROOT

TYPE

U.S. Patent Oct. 4, 2016 Sheet 6 of 31 US 9,460,694 B2

FIG. 6

Measure PartNameIM[iPartlDIMI ExistMeIodym] iPartTimem]-

0 Null 0 0
1 Intro 1 0
2 Intro 1 0
3 A 1 1
4 A 11 1
5 A 11 1
6 A 11 1
7 A 1 1
8 A 1 1
9 A 11 1
10 A 11 1
11 B 12 1
12 B 12 1
13 B 12 1
14 B 12 1
15 B 12 1
16 B 12 1
17 B 12 1
18 B 12 1
19 C 13 1
20 C 13 1
21 C 13 1
22 C 13 1
23 C 13 1
24 C 13 1
25 C 13 1
26 C 13 1
27 C 13 1
28 A 11 1
29 A 11 1
30 A 11 1
31 A 11 1
32 A 11 1
33 A 11 1
34 A 11 1
35 Ending 3 0

US 9,460,694 B2

Sheet 7 of 31

Oct. 4, 2016

U.S. Patent

NVYIHOd

OINOLVIA

(NOILYD01 Lig)
310N 3Tv0S

LN
HL1lL
NIW

rvw

(NOILY001 Lig)
310N ITV0S

(N
HL1L
NIW

rvin

(NOILY201 1ig)
310N 3TV0S

| 0 | | 0 t 0 I 0 } I 0
| 0 | 0 I l 0 | 0 I 0 |
0 L 4 € v G 9 L 8 6 0L |1
0 0 | 01010 | 0 0 I 010
0 I | | 0101010 I I 010
0 0 | 010 ! 0O:0 010 010
0 0 | 01010 I 0 0 | 0110
0 I 4 £ v G 9 L 8 6 0F I
| 01:0 0 I 0:0 I 0110 0 |
| 0:0 0 I 0:0 3 010 3 0
| 0i0 I 0 i0i0 3 010 0i0
| 010 0 | 0:0 I 010 010
0 I 4 £ v G 9 L 8 6 0L I

9/ 9ld

g/ 9ld

V. 9Ol4

US 9,460,694 B2

Sheet 8 of 31

Oct. 4, 2016

U.S. Patent

SLELLEOLESLAVLAELZCLE1LE0LE 67 8 9767+ 2% L %0 1743aNNN AVaYY
NOISSTYOOHd
VIG|S|C|S|r|O|k|V][9(D ALV ol¢ |V QHOHD 2 ON SINOL INIOVray
NOISSTYOOHd oz,m wm&ﬁ SLON
vivlv||ololv|zl|s||v|z|v]|e]|D . 40 [1]uooul W3 LI
QdOHI L ON | v1va 318VIdVA AVHaY ()
]) _] NOISSIHO0Hd
ols|ole|v|v|v]|-]o]9l2 s|1|2 V12| 9| "Guomn o on
aNOL
¢ g - ¥ 9 | z
IN3OVray JNOL IN3OVray (a)
Wi 4val hvol val 407 o7 dvd) tval ivQ} %¥3|| 3LON 40 HOLld
NOISSTHOONHd
' S S o) v 9 A ' 9 V|| “Guoun 2 oN
NOISSTHO0Yd
) v ' v o) v S 0 '/ 9| "Guoro | oN ~dAL TLON (8)
NOISSIHO0Hd
0 o) v v o) o) S o) v 9| "G 6 oN
WY vaY oY va 61 o ¥4 3 ¥a ¥3]) 310N 40 HOLId |

US 9,460,694 B2

Sheet 9 of 31

Oct. 4, 2016

U.S. Patent

[21111suu0gajoN 7o [g][1]108uuodsjoN 710

[¢][[T300uu0daioN 1o

[11[(T108uu0dsjoN 1o

i [9][(1108uu0gaioN 7o 1 [y][r]i0euucgaioN 10 i [z][[1398uuogaioN 710 | [0][(1398uu008)0N 710 - SNVN T18VIEvA
)])] 1)) []
¥ v B | I | vy
08 | SUOLPIOUD 1 | Z |SIONOIGRIEAY 10| §- | SIONSIGRIBAY 0] 66 | SUOLpIOYD © | 21 | WHNLVID9OddY
0L | euolpioyD ™ | | |eIONeIGRIEAY 19| € | SIONGIGEIEAY 10| 66 | SUOLpIOYD © | 91 | WHNLVIDOOddY
G6 | eUOLPIOUD T | - |olONeIGRIEAY | |- |SloNelGeIBAY | - | euopioud @ | G | ILON ONISSd
G6 | eUOLPIOUD 1 | - |GlONeIGeBAY 10| - | SIONSIGRIEAY 10| - | eUoLpIouD ® | ¢ | JLON ONISSVd
6 | eUOLPIOYD ™ | Z |olONeIGRIEAY | | | SlONeIGRIBAY | z | euolpioud ™ | €l | IJLONONISSYd .w%_u
G6 | SUOLPIOUD 1 | ¢ |oIONOIGRIEAY | ¢ | SIONOIGRIBAY 0| ¢ | eUoLpIoud 1 |zk | JLONONISSYd
08 | SUOLPIOUD P | Z |cIONGIGRIEAY | € |cIONeIGRIBAY | | | euoLpioud 10 | Lb | LON ONIMOSHOIAN
06 | eUOLPIOUD ™ | | |GlONeIGRIEAY | € |SlONeIGRIBAY 0| g | euoLpioud 19 | 0) | ILON ONRMOSHOIAN
00L | UOLPIOYT D | 66 | SUOLPIOYT P | 66 | OUOLPIOUD P | 66 | SUOLPIOUD P | 6 | INOLQMOHD
08 |od[SIONINN 0| 0 | oUOLpIoUD ™ | 66 |SIONOIGBIBAY 10| ¢ | ouorpioyd © | 8 | JLON 3dvOST
09 |odALGIONINN ©| 0 | SUOLPIOUD ™ | 66 |SIONGIGEIEAY | | | euolpioyg © | | JLON 3dvOS3
g6 |odA[SIONINN | 0 | oUolpIouD ™ | z- |SIoNeIGeIeAY 10| 66 | ouopioyd ® | 9 | wHNIVI99OddY
G6 |odALSJONINN 0| 0 | SUOLPIOUD ™ | |- |SIONeIGeIBAY 10| 66 | euoLpioud @ | § | WHNLYI990ddY
001 | 2dfLaioNINNTP | 0 | suolpiouye | z |aloNeldeeay | ¢ | euolpiouod | p | JLONONISSVA | Imon
08 |odALSIONINN 0| 0 | ouolpioyd ™ | ¢ | oloNoeoS © | | | euolpioud © | £ | ILONONISSYd
06 |oUALSIONINN 19| 0 | SUolpioud ™ | Z |cloNelGeIeAY | z- | euolpioud 1@ | z | 10N ONRIOSHOIEN
00, |odALBlONINN™| 0 | euolpioyg | | |eloNelqeieay 0| |- | euolpioud ™ | | | 3LON ONROSHOIEN
00, |edALBIONINN | 0 | UOLPiOUJ 1 | 66 | OUOLPIOUD ™ | 66 | GUOLPIOUD ™ | 0 | aINOLQMOHD
INOd 3dALILON 3NOL 3dALILON 3NOL 3dALILON 3NOL 3dALILON |
NOILYATAT €ON IN3OVIQY ¢ON INOVIQY LON INOVIQY 0 °ON 6 'O/
Z ON L ON 0 ON

US 9,460,694 B2

Sheet 10 of 31

Oct. 4, 2016

U.S. Patent

,
(- G6GON >
v|is|[s|e-|s|v-|O]1-|V][9 |02 |[A|L |V 0 [2-| V [INOISSTH90Yd QHOHI 7 ON
00} 9Ol
o|s|v e-|V|v-|V]|[I-[D]9|D]2]|S]|I |V V [2- | O |INOISSTHO0Yd QHOHI | 'ON
<- 08 €ON ->
<~ 06Z°N -
O[6|Oofe-|V ¥-[V[1-[O0[9[O]z S|t [D]2][V [2]O |NOISSTIO0Hd G4OHIO0ON
v 3) g 0 D 4 3 a 3
et : : : : ; P L=1)
-t > i ="
— . 1 - G =1
4% . =" .
S e . &= 80914
: oy - =
: { ‘e > 1=
f m : : - je > O=1)
310N 310N ! 310N 310N 310N
310N 310N 310N 310N JION .

U.S. Patent

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 11D

Oct. 4, 2016 Sheet 11 of 31

US 9,460,694 B2

No. 0 PHRASE SET

No. 1 PHRASE SET

END

AMELODY DATAITEM

B MELODY DATAITEM

C MELODY (REFRAIN MELODY) DATAITEM

FIRST ENDING DATAITEM

SECOND ENDING DATAITEM

No. 0 NOTE DATA ITEM

No. 1 NOTE DATA ITEM

END

TIME

LENGTH

STRENGTH

PITCH

US 9,460,694 B2

Sheet 12 of 31

Oct. 4, 2016

U.S. Patent

+“—>

<~ 0OLSON = ¢~ 0017goN >

Almoa“m.oz -> <- 001:2ON ->
e rir ===== =cc== =====
s —— : i ——— ¢ = —]

AD) wq wy 0
NOILVZINILdO NOLLYZINILdO ¢l 9Ol
—~ £0c! 1021
y0Cl1
SINOLIWIS OML A8 HOLId 3SIVY A
4 3\
—— —— - T e——

—o—1 .ﬁ r_ — M 1 I |t M — t i

WSHIATYH LHOIM/L4T1 %Ww IS

US 9,460,694 B2

\

Sheet 13 of 31

Oct. 4, 2016

U.S. Patent

JUDHIIONI

A

.

-
-
-

HdK-[Z]e10U

HdIK-[g-IuDaI0N]Je30U

UdIK-[|-uDSIONI]830U

HdKK-[|]e30u

Udi<-[0]s30u

Y

¢- = [y]pdi

- = [g]pudi

L

0 = [o]p¥a!
L = [1]pual
¢ = [€]puar

& 94

U.S. Patent

Oct. 4, 2016

Sheet 14 of 31

US 9,460,694 B2

FIG. 14
100
1§401 1;02 1;03
CPU ROM RAM
= = o~
ﬂ 1408
2 @
INPUT DISPLAY SOUND SOURCE
MEANS MEANS UNIT
1404 1405 l 1406
SOUND
SYSTEM

¢

1407

U.S. Patent

Oct. 4, 2016 Sheet 15 of 31 US 9,460,694 B2
VARIABLE NAME MEANING
0k VARIABLE DATA FOR CONTROLLING REPETITIVE

PROCESS

MAX_CHORD_PROG

CONSTANT DATA REPRESENTING THE NUMBER OF
CHORD PROGRESSION DATAITEMS

iJunleSelect

VARIABLE DATA FOR SELECTING MUSIC GENRE

iChordAttribute [n][0]

ARRAY VARIABLE DATAREPRESENTING MUSIC
GENRE OF No. n CHORD PROGRESSION

iConceptSelect

VARIABLE DATA FOR SELECTING MUSIC CONCEPT

iChordAttribute [n][1]

ARRAY VARIABLE DATAREPRESENTING MUSIC
CONCEPT OF No. n CHORD PROGRESSION

iKeyShift

VARIABLE DATA REPRESENTING KEY SHIFT VALUE

PITCH_CLASS_N

CONSTANT DATA REPRESENTING THE NUMBER OF
KEY SHIFTS

doValue VARIABLE DATA REPRESENTING MATCHING LEVEL
VARIABLE DATA REPRESENTING MAXIMUM OF

doMaxValue MATCHING LEVEL

BostUndato VARIABLE DATA INDICATING BEST CHORD

PROGRESSION IN n-TH TIME

iBestKeyShift[n]

KEY SHIFT VALUE OF BEST CHORD
PROGRESSION IN n-TH TIME

iBestChordProg[n]

THE NUMBER OF BEST CHORD PROGRESSION
IN n-TH TIME

iCDesignCnt

VARIABLE DATA REPRESENTING INFORMATION
NUMBER IN CHORD PROGRESSION

cdesign [iCDesignCnt]

ICDesignCnt-TH CHORD DESIGN DATA

cdesign [iCDesignCnt]-> iTime

TIME INFORMATION OF CHORD DESIGN DATA

cdesign[iCDesignCnt]->iRoot

CHORD ROOT INFORMATION OF CHORD DESIGN DATA

cdesign [iCDesignCnt]->iType

CHORD TYPE INFORMATION OF CHORD DESIGN DATA

cdesign [iCDesignCnt]-> iKey

KEY INFORMATION OF CHORD DESIGN DATA

cdesign [iCDesignCnt]->iScale

SCALE INFORMATION OF CHORD DESIGN DATA

mt

POINTER VARIABLE DATA INDICATING META-EVENT

root, type, scale, key

VARIABLE DATA REPRESENTING CHORD ROOT,
CHORD TYPE, SCALE, AND KEY

(CONT)

U.S. Patent

(FIG. 15A CONTINUED)

Oct. 4, 2016

Sheet 16 of 31

sTime

VARIABLE DATA REPRESENTING MEASURE START TIME

iNoteCnt

VARIABLE DATA REPRESENTING NOTE NUMBER OF
TONE SEQUENCE

me, me->iTime

POINTER VARIABLE DATA INDICATING NOTE AND
TIME ITEM THEREOF

notes [iNoteCnt]

NOTE POINTER ARRAY VARIABLE DATA

iPit

NOTE PITCH ITEM VALUE

ipit[i]

PITCH INFORMATION SEQUENCE ARRAY VARIABLE DATA

incon[ix2], incon[ix2-1]

ARRAY VARIABLE DATA OF NOTE TYPES AND
ADJACENT TONES OF i-TH NOTE

VARIABLE DATA WHICH STORES CHORD TONE PITCH

pes CLASS SET
< VARIABLE DATA WHICH STORES TENSION TONE
P PITCH CLASS SET
.3 VARIABLE DATA WHICH STORES SCALE TONE PITCH
P CLASS SET
oot pe2 VARIABLE DATA REPRESENTING CANDIDATE PITCH

CLASSES Nos. 1 AND 2

¢i_ChordTone

CONSTANT DATA REPRESENTING CHORD TONE

ci_AvailableNote

CONSTANT DATA REPRESENTING AVAILABLE NOTE

ci_ScaleNote CONSTANT DATA REPRESENTING SCALE NOTE

ci_TensionNote CONSTANT DATA REPRESENTING TENSION NOTE

ci_AvoidNote CONSTANT DATA REPRESENTING AVOID NOTE

iTotalValue VARIABLE DATA REPRESENTING TOTAL EVALUATION
POINTS

iValue VARIABLE DATA REPRESENTING EVALUATION POINTS

iMaxValue VARIABLE DATA REPRESENTING MAXIMUM

EVALUATION POINTS

ci_NoteConnect[j][kx2]
ci_NoteConnect[i][kx2-1]

k-TH ELEMENT OF j-TH NOTE CONNECTION RULE

US 9,460,694 B2

U.S. Patent Oct. 4, 2016 Sheet 17 of 31 US 9,460,694 B2

FIG. 15B

VARIABLE NAME MEANING

PITCH SEQUENCE ARRAY VARIABLE DATA OF
PHRASES RETAINED IN MOTIF DB

iMelodyB[0] ~ iMelodyB [LLengthB-1]| PITCH SEQUENCE OF INPUT MOTIF
PITCH SEQUENCE LENGTH VARIABLE DATA OF

iMelodyA[0] ~ iMelodyA [LLengthA-1]

iLengthA PHRASES RETAINED IN MOTIF DB
. PITCH SEQUENCE LENGTH VARIABLE DATA OF
9 INPUT MOTIF
. VARIABLE DATA REPRESENTING DISTANCE
doDistance EVALUATION VALUE
oM VARIABLE DATA REPRESENTING MINIMUM DISTANCE
EVALUATION VALUE
BestMochief VARIABLE DATA REPRESENTING BEST PHRASE SET
VIAX_NOTE CANDIDATE Egg réLEJI\RA%SE g(F) %)IIEFFERENT PITCH CANDIDATES
W THE NUMBER OF DIFFERENT PITCH CANDIDATES
FOR EVERY NOTE OF TONE SEQUENCE
o DIFFERENT PITCH CANDIDATE FOR CERTAIN NOTE
P (DIFFERENCE)
_— VARIABLE DATA REPRESENTING PITCH
P CORRECTION VALUE
oot VARIABLE DATA FOR COUNTING DIFFERENT PITCH
CANDIDATES
NMaxvalus \L/é\ljllzllk_BLE DATA REPRESENTING BEST MATCHING

iMaxCnt VARIABLE DATA REPRESENTING BEST COUNTER

U.S. Patent Oct. 4, 2016 Sheet 18 of 31 US 9,460,694 B2

AUTOMATIC
COMPOSITION
Y
PERFORM INITIALIZATION |~ S$1601
- 1602
HAS FINISHING OF
AUTOMATIC COMPOSITION
BEEN INSTRUCTED? / YES Y
NO FINISH AUTOMATIC
! o0 (COMPOSITION
HAS MOTIF INPUT
BEEN INSTRUCTED? /YES
NO Y
RECEVE | 4o
MOTIF INPUT
S1604 |
Y -
HAS AUTOMATIC
COMPOSITION BEEN
INSTRUCTED? / YES
NO '
PERFORM
CHORD-PROGRESSION | ~— 81607
SELECTION
y
PERFORM MELODY
51605 GENERATION $1608
Yy ~ [N
HAS REPRODUCING g
BEEN INSTRUCTED? /YES
NO PERFORM
REPRODUCING [S1609
- \

U.S. Patent

FIG. 17

Oct. 4, 2016

Sheet 19 of 31

CHORD PROGRESSION
SELECTION

Y

INITIALIZE VARIABLES

¥
n=>0

-

Y

—~— 51702

US 9,460,694 B2

—~— 51701

51703

(_n=MAX_CHORD_PROG)ﬁo

YES|

READ n-TH CHORD

PROGRESSION DATAITEM

!

y

(RETURN)

—~— 51704

S1705

(iChordAttribute[n][0]= iJunleSelect

/NO

YES
¥

51706

(iChordAttribute [n][1] = iConceptSelect Y

Y

/NO

YES |

GENERATION

PERFORM CHORD-DESIGN-DATA

—— S1707

Y
iKeyShift = 0

Y

—~— 51708
S1709

< iKeyShift < PITCH_CLASS_N mo

YES|

\

S1710
_

CHECK MATCHING LEVEL BETWEEN INPUT MOTIF AND
CHORD PROGRESSION, AND STORE MATCHING LEVEL

IN VARIABLE DATA ITEM doValue

Y

S1711

(doValue = doMaxValue

'

/NO

YES |

doMaxValue = doValue

INCREMENT iBestUpdate

iBestKeyShift [iBestUpdate | = iKeyShift
iBestChordProg [iBestUpdate]=n

—~—S1712

-t

-t

Y

INCREMENT iKeyShift

—~—S1

31714
713 Y ~

INCREMENT n
|

U.S. Patent Oct. 4, 2016 Sheet 20 of 31 US 9,460,694 B2

FIG. 18 CHORD-DESIGN-DATA)

GENERATION

iCDesignCnt =0 ~—S1801

Y
STOREPONTERTO | oo
FIRST META-EVENT IN “mt’
Y $1803

HAS END BEE ?
S N REACHED VES l
(RETURN)
STORE CHORD ROOT AND 51804
CHORD TYPE IN “root” and “type”
HAS $1805
STORING BEEN
SUCCESSFUL? YES 51806
Y e
NO cdesign [iCDesignCnt]->ITime = mt->Time

cdesign [ICDesignCnt]-> iRoot = root
cdesign [iCDesignCnt]-> iTypet = type
cdesign [iICDesignCnt]-> iKey = -1
cdesign [iCDesignCnt]->iScale = -1

Y

STORE SCALE AND KEY IN
“scale” and “key”

—— S1807

S1808

HAS
STORING BEEN

SUCCESSFUL? YES S1809
y e
NO cdesign [ICDesignCnt]-> ITime = mt->[Time

cdesign [iCDesignCnt]->iRoot = -1
cdesign [iICDesignCnt]->iTypet = -1
cdesign [ICDesignCnt]-> iKey = Key
cdesign [ICDesignCnt]->iScale = Scale

»

\
INCREMENT iCDesignCnt [~S1810
|

L

STORE POINTER TO
NEXT META-EVENT IN “mt’

—~— 51811

U.S. Patent Oct. 4, 2016 Sheet 21 of 31 US 9,460,694 B2

FIG. 19

CHECKING OF MATCHING LEVEL OF
CHORD PROGRESSION FOR INPUT MOTIF

y
doValue =0 [~—S51901

Y

OBTAIN START TIME OF CORRESPONDING MEASURE OF INPUT
MOTIF FROM MUSIC STRUCTURE DATA ITEM CORRESPONDING
TO No. n CHORD PROGRESSION, AND STORE START TIME IN “sTime”

~— 51902

Y
iNoteCnt=0 [~~—S1903

Y
STORE FIRSTNOTE
DATAITEM IN “me”

—~— 51904

) 4

\8205
HAS END BEEN

REACHED? YES

me->iTime = me->iTime + sTime [~—S1906

y
notes[iNoteCnt] = me [~ S1907

Y
INCREMENT iNoteCnt [~—S1908

Y

Y

$1910
/

STORE POINTER TO NEXT

NOTE DATA ITEM IN *me [51909

PERFORM
CHECKING

Y
(RETURN)

U.S. Patent Oct. 4, 2016 Sheet 22 of 31

US 9,460,694 B2

(CHECKING)
Y
i=0 [~ 52001
- $2002
(i<iNoteCnt S2009
" /NO
YES] L o
___ — PERFORM NOTE-
ipit[i] = notes[i]->iPit |~ 52003 CONNECTIVITY
I CHECKING

ACQUIRE CHORD INFORMATION

CURRENT NOTE OF INPUT MOTIF

Y

CORRESPONDING TO TIMING OF | [~ 52004

Y
RETURN

ACQURE ||
NOTE TYPE 52005
$2006
>0 NO
YES

incon [ix2-1]= ipit[i]-ipit[i-1] ~ S2007

y
INCREMENT %" [~ S2008

U.S. Patent

FIG. 21

Oct. 4, 2016 Sheet 23 of 31

US 9,460,694 B2

(A

CQUIRING OF CHORD INFORMATION CORRESPONDING
TO TIMING OF CURRENT NOTE OF INPUT MOTIF

\

-

k=0 [~ 52101
| 52102
e
(k< iCDesignCnt_f-
YES 1
(RETURN)
' 52103

and
cdesign[k]->iKey = 0, and
cdesign[k]-> iScale =0

cdesign[k] ->ITime < notes[i]->ITime, and
cdesign [k+1]->[Time > notes[i]-> ITime,

YES]

key = cdesign[k]->iKey
scale = cdesign[k]->iScale

<
g

—— 52104

NO

Y

and
cdesign[k]->iRoot = 0, and
cdesign[k]->iType =20

cdesign[k]->[Time < notes[i]->Time, and
cdesign[k+1]->ITime > notes[i]-> ITime,

YES|

root = cdesign [k]->iRoot
type = cdesign[k]->iType

—— 52106

-
i}

S2105

NO

Y

INCREMENT “k” [~S2107

U.S. Patent

Oct. 4, 2016

FIG. 22

NOTE-TYPE
ACQUISITION

Sheet 24 of 31

US 9,460,694 B2

Y

ACQUIRE PITCH CLASS SET FROM CHORD TONE
TABLE AND STORE PITCH CLASS SET IN “pcs1”

—~— 52201

Y

ACQUIRE PITCH CLASS SET FROM TENSION NOTE
TABLE AND STORE PITCH CLASS SET IN “pcs2”

—~— 52202

y

ACQUIRE PITCH CLASS

SET FROM SCALE NOTE
TABLE AND STORE PITCH CLASS SET IN “pcs3’

—~— 52203

Y

CALCULATE TONE OF “ipit[i]" RELATIVE
TO “root” AND STORE TONE IN “pc1”

—~ 52204

Y

CALCULATE TONE OF “ipit[i]" RELATIVE
TO “key” AND STORE TONE IN “pc2’

—~— 52205

S2207
/

Y

incon[ix2] = ci_ChordTone

YES

S2209
/

$2206
Y -
1 ”» 1} ’!f)
{ 1S “pct”INCLUDED IN “pest” >VE§______
NO
$2208
y e
IS “pc1”INCLUDED IN “pcs2
AND IS “pc2”INCLUDED IN “pcs3”?
NO
$2210
Y e

y

incon[ix2] = ci_AvailableNote

(1S “pc2’INCLUDED IN “pcs3™?)YES—

NO

S2212
Y Z

S2211
/

y

inconf[ix2] = ci_ScaleNote

(1S “pc1"INCLUDED IN “pes2"?)YES—

NO

S2214
y S

S2213
/

Y

incon[ix2] = ci_TensionNote

incon[ix2] = ci_AvoidNote

Y

/

\

(RETURN)

U.S. Patent

Oct. 4, 2016 Sheet 25 of

(NOTE-CONNECTIVITY CHECKING)

31 US 9,460,694 B2

iTotalValue =0 |~—S2301
i=0 [~—52302
r
$2303
{i<iNoteCnt-2 Y—
NO Y
YES
- - doValue =
Value=0 [~S2304 iTotalValue /|~ $2322
Y (iNoteCnt - 2)
iMaxValue = 0 [~ S2305 I
¥ RETURN
o b soa0s (RETURN)
Y $2307
YES
HAS END BEEN REACHED?
ACCUMULATE
Value IN TotalValue [~ 52320
k=0 [~S2308 i
- INCREMENT 4" [~— S2321
Y
52309
P '
NO
YES
, _ $2310
incon [ix2+kx2]#
ci_NoteConnect [j][kx2] YES
NOy S2311
ci_NoteConnect [j][k*x2+2] X N -
=ci_NullNoteType ~ /YES
NOy 52312
(i=iNoteCnt- 3 and k=2 52316
O YES vy
$2313 ACCUMULATE
NO ci_NoteConnect[j][7]
$2314 IN iValue
YES /
incon[ix2+kx2+1]#
ci_NoteConnect[j][kx2+1]AND
ci_NoteConnect[j][kx2+1]# 99?7 YES
»| NO .| 2319
\i Yy
INCREMENT “k” |~ $2315 INCREMENT ¥’

U.S. Patent Oct. 4, 2016 Sheet 26 of 31 US 9,460,694 B2

FIG. 24

MELODY
GENERATING

Y

PERFORM VARIABLE
INITIALIZATION

Y

READ MUSIC
STRUCTURE DATA

—~— 52401

—~— 52402

=0 [~—S2403

'_824
HAS END BEEN REACHED?

YES l

S2405 (RETURN)

_Y

< DOES CURRENT MEASURE OF

MUSIC STRUCTURE DATA COINCIDE
WITH MEASURE OF INPUT MOTIF? / YES
NOT 52406
IS CURRENT MEASURE THE

BEGINNING OF REFRAIN MELODY? / YES 2408

NOy Y

PERFORM SECOND
PERFORM

MELODY GENERATION
o EaTon | [5%%7 | | (REFRAINBEGINNING
MELODY GENERATION)

Y

Y
INCREMENT " [~ 82409

U.S. Patent Oct. 4, 2016 Sheet 27 of 31

FIG. 25

FIRST MELODY
GENERATION

Y

S2501
_

CURRENT MEASURE THE SAME AS

IS PHRASE TYPE INCLUDING
PHRASE TYPE OF INPUT MOTIF? / YES

NO

US 9,460,694 B2

52502
,J

COPY MELODY OF INPUT MOTIF AS
MELODY OF CURRENT MEASURE

Y

IS IT TRUE THAT MELODY HAS BEEN ALREADY
GENERATED WITH RESPECT TO PHRASE TYPE INCLUDING

CURRENT MEASURE AND EVEN NUMBERS/ODD NUMBERS /YES

OF MEASURES COINCIDE WITH EACH OTHER?

NO

52503

Y

S2504
_

COPY GENERATED MELODY AS
MELODY OF CURRENT MEASURE

Y

PERFORM MOTIF
DB RETRIEVAL

—— 52505

/

COPY MELODY OF PHRASE HAVING
THE SAME TYPE AS PHRASE TYPE
INCLUDING CURRENT MEASURE AND
INCLUDED IN RETRIEVED PHRASE SET

—— 52506

—

i}

Y

PERFORM MELODY
MODIFYING

—— 52507

Y

PERFORM MELODY
OPTIMIZING

—~— 52508

Y

(RETURN)

U.S. Patent

FIG. 26

Oct. 4, 2016 Sheet 28 of 31

MOTIF DB
RETRIEVAL

Y

US 9,460,694 B2

EXTRACT PITCH SEQUENCE OF INPUT MOTIF,
AND STORE PITCH SEQUENCE IN DATA [TEMS
iMelodyB[0]TO iMelodyB [iLengthB-1]

—~— 52601

Y
k=0

—~— 52602

i 52603
FAS END BEEN REACHED?
< ¢ YES

52610
NO Y Z
OUTPUT
(iBestMochief)-TH
PHRASE SET
Y
(RETURN)
L
EXTRACT PITCH SEQUENCE OF
PHRASE CORRESPONDING TO INPUT
MOTIF FROM k-TH PHRASE SET,AND [~—S2604
STORE PITCH SEQUENCE IN DATA ITEMS
iMelodyA [0] TO iMelodyA [iLengthA-1]
/
PERFORM DP MATCHING AND - $9605
STORE RESULT IN “doDistance”

Y
doMin > doDistance)'\’52606
NO Y

doMin = doDistance

YES

—~— 52607

Y
iBestMochief = k

oy

Y
INCREMENT “k”

—— 52608

—~— 52609

U.S. Patent Oct. 4, 2016 Sheet 29 of 31 US 9,460,694 B2

MELODY
MODIFYING
Y
=0 |~ Ss2701
"y $2702
(" i<iNoteCnt)’N_;
YES Y
" 59703 RETURN
WHAT IS
MODIFICATION TYPE? / EFTRIGHT
PITCHSHIFT| o,7, REVERSAL -
Y ~ v o
ADD PREDETERMINED — \
VALUE TO “note [i]-> Pit’ (i< NoteCrt /2 o

YES

Y
ip = note[i]->iPit [~ S2706

Y
note[i]->iPit =
note [iNoteCnt-i-1]->iPit

—~—S2707

Y
note [iNoteCnt-i-1]->iPit=ip [~—S2708

- \

i}

y
INCREMENT " [~—S2709
|

U.S. Patent Oct. 4, 2016 Sheet 30 of 31 US 9,460,694 B2

' (MELODY OPTIMIZING)
IWnum = MAX_NOTE_CANDIDATE”iNoteCnt [~ S2801
v
iCnt=0 ~—S2802
- 52803
(iCnt < IWnum)/
YES NO
i=0 [~—S2819
v $2820
——
(i ;ElgloteCnt /NO l
S2821 RETURN
N Y
ipit[i] = note [i]->iPit +
ipitd [(IMaxCnt / (MAX_NOTE_CANDIDATE"i)
mod MAX_NOTE_CANDIDATE)]
'
I note [i]->iPit = ipit[i] [~ S$2822
i=0 [~—S2805 !
= INCREMENT " |~ 82823
"—\882806 '
{ i< INoteCnt }
NO $2807
YES | >
ipitdev = ipitd [(iCnt / MAX_NOTE_CANDIDATEAi)
mod MAX_ NOTE_CANDIDATE]
$2809
L] ~ y
ipit[i] = notes[i]->iPit + ipitdev CHECKNOTE | | o904
{ CONNECTIVITY
ACQUIRE §2815
—~—S$2810 y
NOTE TYPE (doValue > iMaxValue
S2811 YES|
NO $2812 iMaxValue = Value ~—S2816
-~ ¥
incon[ix2-1]=ipit[i]-ipit[i-1] iMaxCnt = iCnt [~—S2817

LD Y

INCREMENT “" [~—82813 INCREMENT “iCnt” ~S2818
! |

U.S. Patent Oct. 4, 2016 Sheet 31 of 31 US 9,460,694 B2

FIG. 29

SECOND MELODY GENERATION
(REFRAIN BEGINNING MELODY GENERATION

Y S2901

HAS REFRAIN BEGINNING \(
MELODY BEEN GENERATED? /YES

NO $2905
y P
COPY GENERATED REFRAIN
BEGINNING MELODY AS MELODY
OF CURRENT MEASURE
Y
PERFORM MOTIF
DB RETRIEVAL 52902
$2903
Y S

COPY MELODY REFRAIN BEGINNING
MELODY (C MELODY) PHRASE INCLUDED
IN RETRIEVED MOTIF SET

y
PERFORM MELODY
OPTIMIZING

-
-}

Y
(RETURN)

—~— 52904

US 9,460,694 B2

1

AUTOMATIC COMPOSITION APPARATUS,
AUTOMATIC COMPOSITION METHOD AND
STORAGE MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority from the prior Japanese Patent Application No.
2014-235235, filed on Nov. 20, 2014, and the entire contents
of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an automatic composition
apparatus, an automatic composition method and a storage
medium.

2. Description of the Related Art

There is known a technology for automatically compose
music based on a motif melody consisting of a plurality of
note data items. In the related art, for example, the following
technology is known (for example, a technology disclosed in
JP-A-2002-032080). If a certain chord progression is
selected from a database retaining chord progressions of a
specific key, and a motif is input in a certain key, a motif key
is detected from the input motif. Based on the detected motif
key, data on the chord progression is transposed into the
motif key. Then, in a melody generating block, based on the
input motif and the chord progression after the transposition
into the motif key, a melody is generated in the motif key.
Also, the motif is transposed into the specific key based on
the detected motif key, and a melody of the specific key is
generated based on the chord progression of the specific key
and the transposed motif, and then is transposed into a
melody of the motif key.

Also, in the related art, the following technology is known
(for example, a technology disclosed in JP-A-H10-105169).
Notes having lengths equal to or greater than that of a
quarter note are extracted from musical performance data for
karaoke and guide melody data which are music data, and
the distributions of frequencies of the pitch names (C to B)
of the extracted notes are aggregated. The frequency distri-
butions are compared to a major judgment scale and a minor
judgment scale. Then, the data is judged to have a key in
which the tonic note (scale note) exists at a place where the
highest coincidence in distribution shape is attained. Sub-
sequently, based on the result of the key judgment and the
guide melody data, harmony data is generated. Then, based
on the harmony data, a harmony voice signal is produced.

However, the above described technologies according to
the related art are examples in which some essences are
extracted from a motif and are modified. In general, motif
melodies are similar to refrain melodies. Therefore, some
times, motif melodies and refrain melodies have common
features. However, motif melodies and refrain melodies
often do not have common features. That is, motifs and
melodies are often generated according to independent cre-
ative intentions, respectively. Therefore, if refrain melodies
are automatically generated based on motifs by constraint,
like in the technologies according to the related art, it is often
impossible to obtain melodies natural in general meaning.

Meanwhile, in the related art, it is also known a technol-
ogy for inputting both a motif and a refrain melody, thereby
automatically generating a piece of music. However, since
the input method and the like are complicated, this technol-

10

15

20

25

30

35

40

45

50

55

60

65

2

ogy is not appropriate as a method for enabling beginners to
easily enjoy music composition.

SUMMARY OF THE INVENTION

An object of the present invention is to make it possible
to automatically generate a melody natural in the contrast
between a motif and a refrain melody.

According to an aspect, an automatic composition appa-
ratus includes a processing unit. The processing unit per-
forms a receiving process of receiving a phrase including a
plurality of note data items as a received motif and receiving
a type of the phrase, a retrieving process of retrieving a
phrase set from a phrase set database and a melody gener-
ating process of generating a melody based on the retrieved
phrase set. The phrase set includes phrases having the same
type as the received type and having relatively high match-
ing levels for the received motif. The phrase set database
stores a plurality of phrase sets each of which is a combi-
nation of a plurality of phrases of different types.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a block diagram illustrating an embodiment of
an automatic composition apparatus.

FIG. 2 is a view illustrating an example of the structure of
apiece of music which is automatically composed according
to the embodiment.

FIGS. 3A and 3B are views illustrating an example of an
operation of checking the matching levels of chord progres-
sion data items for an input motif 108.

FIGS. 4A and 4B are views illustrating an example of the
data configuration of the input motif.

FIGS. 5A, 5B, 5C and 5D are views illustrating an
example of the data configuration of an accompaniment/
chord-progression DB.

FIG. 6 is a view illustrating an example of the data
configuration of music structure data which is included in
one record.

FIGS. 7A, 7B and 7C are views illustrating an example of
the data configuration of a standard pitch class set table.

FIG. 8 is an explanatory view related to note types,
adjacent tones, and array variable data of the note types and
the adjacent tones.

FIG. 9 is a view illustrating examples of the data con-
figurations of note connection rules.

FIGS. 10A, 10B and 10C are explanatory views illustrat-
ing an operation of a chord-progression selecting unit 102.

FIGS. 11A, 11B, 11C and 11D are views illustrating an
example of the data configuration of a phrase set DB.

FIGS. 12A and 12B are explanatory views illustrating
flows of a melody modifying process and a melody opti-
mizing process.

FIG. 13 is an explanatory view illustrating a detailed flow
of the melody optimizing process.

FIG. 14 is a view illustrating an example of the software
configuration of the automatic composition apparatus.

FIG. 15A is a view illustrating a list of various variable
data, various array variable data, and various constant data.

FIG. 15B is another view illustrating the list of various
variable data, various array variable data, and various con-
stant data.

FIG. 16 is a flow chart illustrating an automatic compo-
sition process.

FIG. 17 is a flow chart illustrating a detailed example of
a chord-progression selecting process.

US 9,460,694 B2

3

FIG. 18 is a flow chart illustrating a detailed example of
a chord-design-data generating process.

FIG. 19 is a flow chart illustrating a detailed example of
a process of checking the matching level between an input
motif and a chord progression.

FIG. 20 is a flow chart illustrating a detailed example of
the checking process.

FIG. 21 is a view illustrating a detailed example of a
process of acquiring chord information corresponding to the
timing of a current note of the input motif.

FIG. 22 is a view illustrating a detailed example of a
note-type acquiring process.

FIG. 23 is a view illustrating a detailed example of a
note-connectivity checking process.

FIG. 24 is a view illustrating a detailed example of a
melody generating process.

FIG. 25 is a view illustrating a detailed example of a first
melody generating process.

FIG. 26 is a view illustrating a detailed example of a
phrase-set-DB retrieval process.

FIG. 27 is a view illustrating a detailed example of the
melody modifying process.

FIG. 28 is a view illustrating a detailed example of the
melody optimizing process.

FIG. 29 is a view illustrating a detailed example of a
second melody generating process.

DETAILED DESCRIPTION OF THE PREPARED
EMBODIMENT

Hereinafter, an embodiment of the present invention will
be described in detail with reference to the accompanying
drawings. FIG. 1 is a block diagram illustrating an embodi-
ment of an automatic composition apparatus 100. The auto-
matic composition apparatus 100 includes a motif input unit
101, a chord-progression selecting unit 102, an accompani-
ment/chord-progression database (hereinafter, referred to as
“DB”) 103, a rule DB 104, a melody generating unit 105, a
phrase set DB 106, and an output unit 107.

The motif input unit 101 receives any one of characteristic
melody parts to define a tune, such as an A melody, a B
melody, and a C melody (a refrain melody), as an input motif
108, from a user. The input motif 108 is any one of a motif
A which is the motif of an A melody, a motif B which is the
motif of a B melody, and a motif C which is the motif of a
C melody, and has, for example, the length of two measures
of the beginning of each melody part. The motif input unit
101 includes, for example, one or more means of a keyboard
input unit 101-1 for receiving a melody through a keyboard
from the user, a voice input unit 101-2 for receiving a
melody which the user sings, through a microphone, and a
note input unit 101-3 for receiving data on notes constituting
a melody through a keyboard or the like from the user. Also,
the input unit 101 includes independent operation units for
receiving motif types such as “A MELODY”, “B
MELODY”, “C MELODY (REFRAIN MELODY)”, and so
on.

With respect to each of a plurality of chord progression
data items retained in the accompaniment/chord-progression
DB 103, the chord-progression selecting unit 102 calculates
the matching level representing how much the correspond-
ing chord progression data item is suitable for the input
motif 108 input from the motif input unit 101 while referring
to the rule DB 104, and outputs, for example, Nos. 0, 1, and
2 chord progression candidate indication data items (each of
which is referred to as “CHORD PROGRESSION CANDI-

10

15

20

25

30

35

40

45

50

55

60

65

4

DATE” in FIG. 1) 109 indicating chord progression data
items of the top three matching levels, respectively.

The melody generating unit 105 prompts, for example, the
user to select one of three chord progression candidates
corresponding to Nos. 0, 1, and 2 chord progression candi-
date indication data items 109 output from the chord-
progression selecting unit 102. Alternatively, the melody
generating unit 105 may automatically select a chord pro-
gression candidate corresponding to any one of Nos. 0, 1,
and 2 chord progression candidate indication data items 109,
in turns. As a result, the melody generating unit 105 reads a
music structure data item corresponding to the selected
chord progression candidate, from the accompaniment/
chord-progression DB 103. With respect to each of the
phrases of measures represented by the read music structure
data item, the melody generating unit 105 automatically
generates a melody of the corresponding phrase with refer-
ence to the input motif 108, phrase sets registered in the
phrase set DB 106, and the rule DB 104. The melody
generating unit 105 performs an automatic melody genera-
tion process with respect to every measure of the whole
music, and outputs the automatically generated melody data
110.

The output unit 107 includes a score display unit 107-1
which displays a melody score based on the melody data 110
automatically generated by the melody generating unit 105,
and a musical-sound reproducing unit 107-2 which performs
reproducing of a melody and accompaniment based on the
melody data 110 and MIDI (Musical Instrument Digital
Interface) data for accompaniment acquired from the accom-
paniment/chord-progression DB 103.

Subsequently, the outline of an operation of the automatic
composition apparatus 100 having the functional configu-
ration of FIG. 1 will be described. FIG. 2 is a view
illustrating an example of the structure of a piece of music
which is automatically composed in the present embodi-
ment. A piece of music is composed of phrases such as an
introduction, an A melody, a B melody, an interlude, a C
melody (a refrain melody), and an ending. The introduction
is a prelude part which precedes a melody and is composed
of only accompaniment. The A melody generally means a
phrase next to the introduction, and is generally a calm
melody. The B melody means a phrase next to the A melody,
and is likely to become a tune more exciting than the A
melody. The C melody is likely to be a phase next to the B
melody. In Japanese music, the C melody is likely to be a
refrain melody. On the contrary to the introduction, the
ending means the ending phase of the piece of music. The
interlude is, for example, a phrase for only musical instru-
ment performance without any melody between two sections
of the piece of music. In the music structure example shown
in FIG. 2, a piece of music is composed in the order of an
introduction, an A melody, a B melody, another A melody, an
interlude, another A melody, another B melody, a C melody,
and an ending.

In the present embodiment, the user can input, for
example, the melody of two measures of the beginning of,
for example, an A melody appearing for the first time in a
piece of music, as a motif A (which is an example of the
input motif 108 of FIG. 1) of Part (a) of FIG. 2, from the
motif input unit 101 (see FIG. 1). Alternatively, the user can
input, for example, the melody of two measures of the
beginning of, for example, a B melody appearing for the first
time in a piece of music, as a motif B (which is another
example of the input motif 108 of FIG. 1) of Part (b) of FIG.
2, from the motif input unit 101 (see FIG. 1). Alternatively,
the user can input, for example, the melody of two measures

US 9,460,694 B2

5

of the beginning of, for example, a C melody appearing for
the first time in a piece of music, as a motif C (which is
another example of the input motif 108 of FIG. 1) of Part (¢)
of FIG. 2, from the motif input unit 101 (see FIG. 1).

FIG. 3A is a view illustrating an example of notes of the
input motif 108 which is input in the above described way.
As described above, as the input motif 108, for example, a
melody of two measures is designated.

With respect to this input, the chord-progression selecting
unit 102 (see FIG. 1) extracts, for example, the top three
chord progression data items each of which is composed of
a chord, a key, and a scale appropriate for the input, from the
chord progression data items registered in the accompani-
ment/chord-progression DB 103. Chords, keys, and scales
which constitute chord progression data items are set over
the whole piece of music as shown in Parts (f) and (g) of
FIG. 2.

FIG. 3B is a view illustrating examples of Nos. 0, 1, and
2 chord progressions (chords, keys, and scales) which are
represented by the top three chord progression data items.

The melody generating unit 105 of FIG. 1 automatically
generates melodies corresponding to phase parts of Part (d)
of FIG. 2 other than the phase part of any one of Part (a), (b),
or (¢) of FIG. 2 received by the input motif 108, based on
those information items, and outputs the generated melodies
together with the melody of the input motif 108, as the
melody data 110. Then, the output unit 107 of FIG. 1
performs score display or sound emission corresponding to
the automatically generated melody data 110. Also, with
respect to accompaniment, MIDI data items for accompa-
niment registered in the accompaniment/chord-progression
DB 103 in association with a finally selected chord progres-
sion are sequentially read. Based on the read MIDI data
items, accompaniment is performed over the whole piece of
music as shown in Part (e) of FIG. 2.

FIG. 4 is a view illustrating an example of the data
configuration of the input motif 108 which the motif input
unit 101 of FIG. 1 generates based on the user’s input. As
shown in FIG. 4A, the input motif 108 is composed of a
plurality of note data items having Nos. 0, 1, .. ., and an end
code is stored finally. The individual note data items are data
items which correspond to, for example, the notes of two
measures constituting, for example, the input motif 108
exemplified in FIG. 3A, respectively, and instructs produc-
tion of a melody sound which becomes a motif. As shown
in FIG. 4B, one note data item is composed of “TIME” data
which represents the sound production timing of a note
corresponding to that note data item, for example, by an
elapsed time from the beginning of the input motif 108,
“LENGTH” data representing the length of the note,
“STRENGTH?” data representing the strength of the note,
and “PITCH” data representing the pitch of the note. Theses
data represent one note of the input motif 108 corresponding
to two measures and exemplified in FIG. 3A.

FIG. 5 is a view illustrating an example of the data
configuration of the accompaniment/chord-progression DB
103 of FIG. 1. As shown in FIG. 5A, in a chord progression
DB, a plurality of records such as No. O record and No. 1
record each of which (one row of FIG. 5A) is composed of
a chord progression data item, a MIDI data item for accom-
paniment, and a music structure data item is stored, and an
end code is finally stored.

In one record, the chord progression data item represents
a chord progression corresponding to a melody of a piece of
music. The chord progression DB shown in FIG. 5A retains,
for example, fifty records, that is, chord progression data
items corresponding to fifty pieces of music. As shown in

30

35

40

45

6

FIG. 5B, the chord progression data item of one record
(corresponding to one piece of music) is composed of a
plurality of chord data items such as No. 0 chord data item
and No. 1 chord data item and an end code which is stored
finally. In a chord data item, there are a data item (FIG. 5C)
which designates a key and a scale at a certain timing, and
a data item (FIG. 5D) which designates a chord at a certain
timing (see FIG. 3B). Each data item which designates a key
and a scale is composed of “TIME” data representing the
start timing of the corresponding key and scale, “KEY™ data,
and “SCALE” data, as shown in FIG. 5C. Each data item
which designates a chord is composed of “TIME” data
representing the start timing of the corresponding chord,
“ROOT” data representing the root of the chord, and
“TYPE” data representing the type of the chord, as shown in
FIG. 5D. Each chord progression data item is stored, for
example, as meta data of the MIDI standard.

The music structure data item of one record (correspond-
ing to one piece of music) of the accompaniment/chord-
progression DB 103 shown in FIG. 5A has a data configu-
ration shown as an example in FIG. 6. The music structure
data item forms one record (one row of FIG. 6) for each
measure of one piece of music. In one record of the music
structure data item, information representing the type of a
phrase corresponding to the corresponding measure and
whether there is any melody in the corresponding phrase is
stored.

In the music structure data item shown in FIG. 6, in a
“Measure” item, a value representing what number of mea-
sure data of a corresponding record corresponds to is reg-
istered. Hereinafter, a record in which the value of the
“Measure” item is M will be referred to as No. M record, and
a measure which the corresponding record represents will be
referred to as No. (M+1) measure. For example, in a case
where the value of the “Measure” item is 0, a corresponding
record is No. 0 record/No. 1 measure, and in a case where
the value of the “Measure” item is 1, a corresponding record
is No. 1 record/No. 2 measure.

In the music structure data item shown in FIG. 6, in a
“PartName[M]” item and a “iPartID[M]” item (wherein “M”
is the value of the “Measure” item), data representing the
type of the phrase of No. M record/No. (M+1) measure and
an identification value corresponding to that type are regis-
tered, respectively. For example, the values “Null” and “0”
of the “PartName[M]” item and the “iPartID[M]” item of
No. 0 record (No. 1 measure) represent that the correspond-
ing measure is soundless. The values “Intro” and “1” of the
“PartName[M]” item and the “iPartID[M]” item of each of
Nos. 1 and 2 records (Nos. 2 and 3 measures) represent that
the corresponding measure is an introduction phrase. The
values “A” and “11” of the “PartName[M]” item and the
“iPartID[M]” item of each of Nos. 3 to 10 records and Nos.
28 to 34 records (Nos. 4 to 11 measures and Nos. 29 to 35
thirty fifth measures) represent that the corresponding mea-
sure is an A melody phrase. The values “B” and “12” of the
“PartName[M]” item and the “iPartID[M]” item of each of
Nos. 11 to 18 records (Nos. 12 to 19 measures) represent that
the corresponding measure is a B melody phrase. The values
“C” and “13” of the “PartName[M]” item and the “iPartID
[M]” item of each of Nos. 19 to 27 records (Nos. 20 to 28
measures) represent that the corresponding measure is a C
melody phrase. The values “Ending” and “3” of the “Part-
Name[M]” item and the “iPartID[M]” item of No. 35 record
(No. 36 measure) represent that the corresponding measure
is an ending phrase.

Also, in the music structure data item shown in FIG. 6, in
an “ExistMelody[M]” item (wherein “M” is the value of the

US 9,460,694 B2

7

“Measure” item), a value representing whether any melody
exists in the phrase of No. M record (No. (M+1) measure)
is registered. If a melody exists, a value “1” is registered;
whereas if any melody does not exist, a value “0” is
registered. For example, in the “ExistMelody[M]” item of
each phrase where the “PartName[M]” item (wherein “M” is
0, 1, 2, or 35) (No. 0, 1, 2, or 35 record (No. 1, 2, 3, or 36
measure)) is “Null”, “Intro”, or “Ending”, a value “0”
representing that any melody does not exist is registered. In
a case where the “PartName[M]” item is “Null”, a corre-
sponding phrase is soundless, and in a case where the
“PartName[M]” item is “Intro” or “Ending”, only accom-
paniment exists.

Also, in the music structure data item shown in FIG. 6, in
the “iPartTime[M]” item (wherein “M” is the value of the
“Measure” item), data on the measure start time of No.
(M+1) measure corresponding to the No. M record is
registered. Although sections of FIG. 6 for the “iPartTime
[M]” item are blank, in each record, an actual time value is
stored.

The music structure data item shown in FIG. 6 and
described above is stored as meta data of the MIDI standard.

As described above with reference to FIG. 2, the user can
input, for example, the melodies of Nos. 3 and 4 records
(Nos. 4 and 5 measures) which are two measures of the
beginning of, for example, the A melody appearing for the
first time in the music structure data item of FIG. 6, as the
motif A (see FIG. 2), from the motif input unit 101 (see FIG.
1). Alternatively, the user can input, for example, the melo-
dies of Nos. 11 and 12 records (Nos. 12 and 13 measures)
which are two measures of the beginning of, for example,
the B melody appearing for the first time in the music
structure data item of FIG. 6, as the motif B (see Part (b) of
FIG. 2), from the motif input unit 101. Alternatively, the user
can input, for example, the melodies of Nos. 19 and 20
records (Nos. 20 and 21 measures) which are two measures
of the beginning of, for example, the C melody appearing for
the first time in the music structure data item of FIG. 6, as
the motif C (see Part (¢) of FIG. 2), from the motif input unit
101.

With respect to each of the chord progression data items
(hereinafter, referred to as evaluation target chord progres-
sion data items) retained in the accompaniment/chord-pro-
gression DB 103, the chord-progression selecting unit 102
calculates the matching level representing how much the
corresponding evaluation target chord progression data item
is suitable for the input motif 108 input from the motif input
unit 101.

In the present embodiment, the chord-progression select-
ing unit calculates the matching level of each evaluation
target chord progression data item for the input motif 108,
using the available note scale concept of music theory. An
available note scale represents notes available for melodies,
as a scale, in a case where chord progressions are given.
Examples of the types of notes (hereinafter, referred to as
“note types”) constituting an available note scale include
“CHORD TONE”, “AVAILABLE NOTE”, “SCALE
NOTE”, “TENSION NOTE”, and “AVOID NOTE”. A
chord tone is a chord constituent note which becomes a scale
source, and is a note type in which it is preferable to use one
note as a melody. An available note is a note type which is
generally usable in melodies. A scale note is a scale con-
stituent note and is a note type which needs to be carefully
handled because if the corresponding note is applied as a
long sound or the like, it clashes with an original chord
sound. A tension note is a note which is superimposed on a
chord sound and is used as a tension of a chord, and is a note

20

25

35

40

45

55

8

type in which a tension increases, a feeling of tension of a
sound or a sound becomes richer. An avoid note is a note
which is not harmonic with a chord, and is a note type in
which it is preferable to avoid use of the corresponding note
or to use the corresponding note as a short note. In the
present embodiment, with respect to each note (each note of
FIG. 3A) constituting the input motif 108, based on the key,
the scale, the chord root, and the chord type included in a
chord progression data item which is an evaluation target
corresponding to the sound production timing of the corre-
sponding note, the note type in a chord progression corre-
sponding to the corresponding note is calculated.

In order to obtain the note type of each note (each note of
FIG. 3A) constituting the input motif 108 as described
above, in the present embodiment, a standard pitch class set
table is used. FIG. 7 is a view illustrating an example of the
data configuration of the standard pitch class set table. The
standard pitch class set table is located in a memory area of
the chord-progression selecting unit 102 (for example, in a
ROM 1402 of FIG. 4 to be described below). The standard
pitch class set table is composed of a chord tone table
exemplified in FIG. 7A, a tension note table exemplified in
FIG. 7B, and a scale note table exemplified in FIG. 7C.

In the table of FIGS. 7A, 7B and 7C, a pitch class set
corresponding to one row thereof is composed of total
twelve bit data items which each are set to a value “0” or “1”
with respect to scale constituent notes which are No. 0 note
(No. 0 bit) (the right end of the row of the drawing) to No.
11 note (No. 11 bit) (the left end of the row of the drawing)
constituting a chromatic scale corresponding to one octave
in a case where a chord or a scale root is set as No. 0 note
(No. 0 bit) which is a scale constituent note. In one pitch
class set, a scale constituent note having the value “1”
represents that the corresponding note is included in the
constituent elements of the pitch class set, and a scale
constituent note having the value “0” represents that the
corresponding note is not included in the constituent ele-
ments of the pitch class set.

The pitch class set (hereinafter, referred to as the “chord
tone pitch class set”) corresponding to each row of the chord
tone table of FIG. 7A stores what scale constituent note is a
chord constituent note of a chord type written at the right end
of the corresponding pitch class set set, with respect to the
corresponding chord type, in a case where a corresponding
chord root is given as the scale constituent note which is No.
0 note (No. 0 bit). For example, in the first row of the chord
tone table exemplified in FIG. 7A, a chord tone pitch class
set “000010010001” represents that the scale constituent
notes of No. 0 note (No. 0 bit), No. 4 note (No. 4 bit), and
No. 7 note (No. 7 bit) are chord constituent notes of a chord
type “MAJ”.

With respect to each note (hereinafter, referred to as a
“current note”) constituting the input motif 108, the chord-
progression selecting unit 102 of FIG. 1 calculates what tone
(hereinafter, referred to as “chord tone”) the pitch of the
current note has with respect to the chord root of an
evaluation target chord progression data item corresponding
to the sound production timing of the current note. In this
case, the chord-progression selecting unit 102 performs a
calculation of mapping the pitch of the current note to any
one of the scale constituent notes from No. 0 note to No. 11
note included in one octave in a case where the chord root
described in the evaluation target chord progression data
item corresponding to the sound production timing of the
current note is set as the scale constituent note of No. 0 note,
thereby calculating the note of the mapped location (any one
of No. 0 note to No. 11 note) as the above described chord

US 9,460,694 B2

9

tone. Thereafter, the chord-progression selecting unit 102
determines whether the calculated chord tone is included in
the chord constituent notes of the chord tone pitch class set
on the chord tone table exemplified in FIG. 7A and corre-
sponding to the chord type described in the chord progres-
sion data item which is the evaluation target corresponding
to the above described sound production timing.

Each pitch class set (hereinafter, referred to as a “tension
note pitch class set”) corresponding to one row of the tension
note table of FIG. 7B stores what scale constituent note is a
tension for a chord type described at the right end of the
corresponding row, with respect to the corresponding chord
type, in a case where a corresponding chord root is set to the
scale constituent note of No. 0 note (No. 0 bit). For example,
in the first row of the tension note table exemplified in FIG.
7B, a tension note pitch class set “001001000100” repre-
sents that No. 2 note (No. 2 bit), No. 6 note (No. 6 bit), and
No. 9 note (No. 9 bit) are tensions for the chord type “MAJ”
(wherein the chord root is “C”).

The chord-progression selecting unit 102 of FIG. 1 deter-
mines whether a chord tone for the chord root of the pitch
of the current note described above is included in tension
notes of the tension note pitch class set of the tension note
table exemplified in FIG. 7B and corresponding to the chord
type in the chord progression data item which is the evalu-
ation target corresponding to the sound production timing of
the current note.

Each pitch class set (hereinafter, referred to as a “scale
note pitch class set”) corresponding to one row of the scale
note table of FIG. 7C stores what scale constituent note is a
scale constituent note corresponding to a scale described at
the right end thereof, with respect to the corresponding
scale, in a case where a corresponding scale root is set to the
scale constituent note of No. 0 note (No. 0 bit). For example,
in the first row of the scale note table exemplified in FIG. 7C,
a scale note pitch class set “101010110101” represents that
No. 0 note (No. 0 bit), No. 2 note (No. 2 bit), No. 4 note (No.
4 bit), No. 5 note (No. 5 bit), No. 7 note (No. 7 bit), No. 9
note (No. 9 bit), and No. 11 note (No. 11 bit) are scale
constituent notes of a scale “DIATONIC”.

The chord-progression selecting unit 102 of FIG. 1 cal-
culates what tone (hereinafter, referred to as “key tone” the
pitch of the current note has with respect to a key described
in the chord progression data item which is the evaluation
target corresponding to the sound production timing of the
current note. In this case, similarly to the case of the chord
tone calculation, the chord-progression selecting unit 102
performs a calculation of mapping the pitch of the current
note to any one of the scale constituent notes from No. 0 note
to No. 11 note included in one octave in a case where the key
described in the chord progression data item which is the
evaluation target corresponding to the sound production
timing of the current note is set to the scale constituent note
of No. 0 note, thereby calculating a note of the mapped
location (any one of No. 0 note to No. 11 note) as the above
described key tone. Thereafter, the chord-progression select-
ing unit 102 determines whether the calculated key tone is
included in the scale constituent notes of the scale note pitch
class set on the scale note table exemplified in FIG. 7C and
corresponding to the chord type described in the chord
progression data item which is the evaluation target corre-
sponding to the above described sound production timing.

In the above described way, the chord-progression select-
ing unit 102 determines whether any chord tone is included
in the chord constituent notes of the chord tone pitch class
set corresponding to the chord type described in the chord
progression data item which is the evaluation target corre-

40

45

10

sponding to the sound production timing of the current note
of the input motif 108. Also, the chord-progression selecting
unit 102 determines whether any chord tone is included in
the tension notes of the tension note pitch class set of the
tension note table exemplified in FIG. 7B and corresponding
to the above described chord type. Further, the chord-
progression selecting unit 102 determines whether any key
tone is included in the scale constituent notes of the scale
note pitch class set of the scale note table exemplified in
FIG. 7C and corresponding to the scale described in the
chord progression data item which is the evaluation target.
Thereafter, based on those determinations, the chord-pro-
gression selecting unit 102 obtains information on which of
a chord tone, an available note, a scale note, a tension note,
and an avoid note the current note corresponds to, that is,
note type information. Details of the note-type acquiring
process will be described below with reference to FIG. 22.

Part (a) of FIG. 8 is a view illustrating examples of note
types which the chord-progression selecting unit 102 obtains
with respect to examples Nos. 0, 1, and 2 chord progression
data items which are evaluation targets read from the accom-
paniment/chord-progression DB 103 of FIG. 1 and exem-
plified in FIG. 3B, for the pitch (a gray part of Part (a) of
FIG. 8) of each note of the input motif 108 exemplified in
FIG. 3A. In Part (a) of FIG. 8, “C”, “A”, “S”, and “V” are
values representing the note types of a chord tone, an
available note, a scale note, and an avoid note, respectively.
Also, although not shown, “T” is a value representing the
note type of a tension note. Also, in Part (a) of FIG. 8, in
order for notation simplification, each of the values repre-
senting the note types is denoted by one alphabet. However,
as the individual note type values which are actually stored,
for example, “ci_ChordTone” (equivalent to the notation
“C”) can be used as a constant value representing a chord
tone, “ci_AvailableNote” (equivalent to the notation “A”)
can be used as a constant value representing an available
note, “ci_ScaleNote” (equivalent to the notation “S”) can be
used as a constant value representing a scale note, “ci_Ten-
sionNote” (equivalent to the notation “I”) can be used as a
constant value representing a tension note, and “ci_Avoid-
Note” (equivalent to the notation “V”) can be used as a
constant value representing an avoid note (see FIG. 15A to
be described below).

Subsequently, with respect to each of the pitches of the
individual notes of the input motif 108, the chord-progres-
sion selecting unit 102 calculates semitones (hereinafter,
referred to as adjacent tones between the corresponding
pitch and an adjacent pitch. Adjacent tones of Part (b) of
FIG. 8 are examples of calculation results of tones between
the pitches of the individual notes of the input motif 108 (a
gray part of Part (b) of FIG. 8).

With respect to each chord progression data item which is
an evaluation target, the chord-progression selecting unit
102 generates an array variable data item (which is herein-
after denoted by “incon[i]” wherein “i” is an array number)
alternately containing note types and adjacent tones calcu-
lated as described. Part (c) of FIG. 8 is a view illustrating
examples of array variable data items incon[i]| calculated
with respect to examples of Nos. 0, 1, and 2 chord progres-
sion data items which are three evaluation targets read from
the accompaniment/chord-progression DB 103 of FIG. 1
and exemplified in FIG. 3B. In Nos. 0, 1, and 2 array
variable data items incon[i] of Part (c) of FIG. 8, in indi-
vidual elements whose array numbers i are even numbers 0,
2,4,6,8,10, 12, 14, 16, or 18, the note types of Nos. 0, 1,
and 2 chord progressions of Part (a) of FIG. 8 are copied
sequentially from the beginning. Also, in the array variable

US 9,460,694 B2

11

data items incon[i] of Nos. 0, 1, and 2 chord progressions,
in individual elements whose array numbers i are odd
numbers 1, 3, 5,7, 9, 11, 13, 15, or 17, the adjacent tones of
Part (b) of FIG. 8 are subsequently copied.

Subsequently, with respect to an array variable data item
incon[i] (wherein, “i” is 0, 1, 2, 3 . . .) containing the note
types of the individual notes of the input motif 108 and the
adjacent tones calculated in the above described way for a
chord progression data item which is a current evaluation
target, the chord-progression selecting unit 102 performs a
note-connectivity checking process of evaluating a rule of
combination of note types and adjacent tones (hereinafter,
this rule will be referred to as the note connection rule),
sequentially from the array number “0”, for example, for
every four sets. In this note-connectivity checking process,
the chord-progression selecting unit 102 refers to note
connection rules retained in the rule DB 104 of FIG. 1.

FIG. 9 is a view illustrating an example of the data
configuration of the note connection rules stored in the rule
DB 104. The note connection rules include three-note rules
and four-note rules, which are given names, for example,
“chord tone” “neighboring note”, “passing tone”, “appog-
giatura”, “escape note”, and the like. Also, each note con-
nection rule is given an evaluation point for evaluating how
much the corresponding rule is appropriate for forming a
melody. Further, in the present embodiment, array variable
data items including “ci_NoteConnect[j][2k]” (0<k=<3) and
“ci_NoteConnect[j][2k+1]” (0O<k=2) as variables represent-
ing note connection rules. Here, a variable data item [j]
indicates No. j (No. j row in FIG. 9) note connection rule
data item of the rule DB 104. Also, a variable data item [k]
takes any one of values O to 3. Further, in items ci_Note-
Connect[j][2k], that is, ci_NoteConnect[j][0], ci_NoteCon-
nect[j][2], ci_NoteConnect[j][4], and ci_NoteConnect[j][6],
the note types (Nos. 0 to 3 note types) of Nos. 1 to 4 notes
of' the j-th note connection rule are stored, respectively. Also,
No. 0 to 8 note connection rules in which No. 4 notes (No.
3 note types) are “ci_NullNoteType” represent that the note
types of No. 4 notes do not exist, and the corresponding note
connection rules each are substantially composed of three
notes. Also, in items ci_NoteConnect[j][2k+1], that is,
ci_NoteConnect[j][1], ci_NoteConnect[j][3], and ci_Note-
Connect[j][5], the adjacent tone of the first note (No. 0) and
the second note (No. 1) of the j-th note connection rule, the
adjacent tone of the second note (No. 1) and the third note
(No. 2), and the adjacent tone of the third note (No. 2) and
the fourth note (No. 3) are stored, respectively. The numeri-
cal values of the adjacent tones represent semitones, and a
positive value represents that a tone rises, and a negative
value represents that a tone lowers. Also, a value “99”
represents that a tone can have any value, and a value “0”
represents that a tone does not change. Also, since No. O to
8 note connection rules in which No. 4 notes (No. 3 note
types) are “ci_NullNoteType” represent that the note types
of No. 4 notes do not exist (their values are “ci_NullNote-
Type” as described above, the value of an item “ci_Note-
Connect[j]|[5]” where the adjacent tone of the third note (No.
2) and the fourth note (No. 3) becomes “0”. In the final item
“ci_NoteConnect[j][7]”, the evaluation point of the j-th note
connection rule is stored.

As note connection rules having the above described data
configuration, eighteen rules having j values 0 to 17 as
exemplified in FIG. 9 are registered in advance in the rule
DB 104 of FIG. 1.

The chord-progression selecting unit 102 performs the
note-connectivity checking process using the note connec-
tion rules having the above described configuration. Sequen-

10

15

20

25

30

35

40

45

50

55

60

65

12

tially from the beginning note of the input motif 108
corresponding to two measures and exemplified in FIG.
10A, with respect to every four notes as shown by “i” values
of 0 to 6 in FIG. 10B, the chord-progression selecting unit
102 compares a set of note types and adjacent tones stored
in associated with the corresponding notes in the array
variable data item incon[i] with a set of note types and
adjacent tones of a set of note connection rules selected
subsequently from a rule having a j value “0” from the note
connection rules having j values “0” to “17”, thereby they
coincide with each other.

For example, in a case of i=0 shown in FIG. 10B, as
shown by an arrow directed toward the right, the chord-
progression selecting unit 102 compares a set of the note
types and adjacent tones of the first to fourth notes (the first
to fourth tones of the drawing) of the input motif 108 with
each of four sets of note types and adjacent tones of each
note connection rule whose j value is 0, 1, 2,3 . . . and which
is exemplified in FIG. 9, thereby determining whether they
coincide with each other.

First, in the note connection rule having a j value “0” and
exemplified in FIG. 9, all of Nos. 0, 1, and 2 note types
become a chord tone “ci_ChordTone”. With respect to this,
for example, in a case where a chord progression data item
which is an evaluation target is No. 0 chord progression
exemplified in FIG. 3B, an array variable data item incon[i]
of note types and adjacent tones corresponding to the input
motif 108 of FIG. 10A corresponding to FIG. 3A becomes
a data item shown on the right side of No. 0 chord progres-
sion of FIG. 10C. Therefore, the note types of the first,
second, third, and fourth notes of the input motif 108
becomes “CHORD TONE” (C), “AVAILABLE NOTE” (A),
and “CHORD TONE” (C), and thus do not coincide with the
note connection rule having the j value “0”. In this case, the
evaluation point of the note connection rule having the j
value “0” is not added.

Subsequently, in the note connection rule having the j
value “1” and exemplified in FIG. 9, Nos. 0, 1, and 2 note
types become “CHORD TONE” (ci_ChordTone), “AVAIL-
ABLE NOTE” (ci_AvailableNote), and “CHORD TONE”
(ci_ChordTone). With respect to this, for example, in a case
where a chord progression data item which is an evaluation
target is No. 0 chord progression exemplified in FIG. 3B, the
note types of the note connection rule having the j value “1”
coincides with the note types of the first, second, third, and
fourth notes of the input motif 108 obtained from the array
variable data item incon[i] of note types and adjacent tones
shown on the right side of No. O chord progression of FIG.
10C. However, the adjacent tone of the first note (No. 0) and
the second note (No. 1) of the note connection rule having
the j value “1” is “4”, and the adjacent tone of the second
note (No. 1) and the third note (No. 2) is “1”, and these do
not coincide with the adjacent tone “-2” of the first note and
the second note of the input motif 108 and the adjacent tone
“2” of the second note and the third note obtained from the
array variable data item incon[i] of the note types and the
adjacent tones shown on the right side of No. O chord
progression of FIG. 10C. Therefore, even in a case where the
j value is 1, similarly to the case where the j value is O, the
evaluation point of the note connection rule is not added.

Subsequently, in the note connection rule having the j
value “2” and exemplified in FIG. 9, Nos. 0, 1, and 2 note
types become “CHORD TONE” (ci_ChordTone), “AVAIL-
ABLE NOTE” (ci_AvailableNote), and “CHORD TONE”
(ci_ChordTone). With respect to this, for example, in a case
where a chord progression data item which is an evaluation
target is No. 0 chord progression exemplified in FIG. 3B, the

US 9,460,694 B2

13

note types of the note connection rule having the j value “1”
coincides with the note types of the first, second, third, and
fourth notes of the input motif 108 obtained from the array
variable data item incon[i] of note types and adjacent tones
shown on the right side of No. O chord progression of FIG.
10C. Also, the adjacent tone of the first note (No. 0) and the
second note (No. 1) of the note connection rule having the
j value “1” is “~2”, and the adjacent tone of the second note
(No. 1) and the third note (No. 2) is “2”, and these coincide
with the adjacent tone of the first note and the second note
and the adjacent tone of the second note and the third note
obtained from the array variable data item incon[i] of the
note types and the adjacent tones shown on the right side of
No. 0 chord progression of FIG. 10C. Further, since the
fourth note (No. 3 note type) of the note connection rule
having the j value “2” has the value “ci_NullNoteType”
representing that there is no note type, the fourth note of the
input motif 108 may not be compared. From the above, it
can be seen that the first, second, and third notes of the input
motif 108 in a case where an evaluation target is No. 0 chord
progression data item are appropriate for the note connection
rule having the j value “2” and shown in FIG. 9, and 90
points which are the evaluation points (ci_NoteConnect[2]
[7]) of the note connection rule having the j value “2” are
added to total evaluation points corresponding to No. O
chord progression data item which is an evaluation target.
An expression “«—No02:90—"" written with respect to No. 0
chord progression in FIG. 10C corresponds to that adding
process.

If a note connection rule is seen in the above described
way, with respect to the subsequent note connection rules of
the corresponding note connection rule, evaluation on the set
of the note types and the adjacent tones of the first, second,
third, and fourth notes of the input motif 108 in the case of
i=0 in FIG. 10B is not performed.

If evaluation on the set of the note types and the adjacent
tones of the first, second, third, and fourth notes of the input
motif 108 in the case of i=0 shown in FIG. 10B finishes,
notes which are evaluation targets on the input motif 108 are
advanced by one, thereby becoming the state of i=1 shown
in FIG. 10B, and the chord-progression selecting unit 102
compares the set of note types and adjacent tones of the
second, third, fourth, and fifth notes of the input motif 108
with a set of four note types and adjacent tones of each note
connection rule having the j value 0, 1, 2, 3, . . . and
exemplified in FIG. 9, thereby determining whether they
coincide with each other. As a result, the set of the note types
and the adjacent tones of the second, third, fourth, and fifth
notes of the input motif 108 corresponding to No. 0 chord
progression data item which is an evaluation target and is
shown in FIG. 10C does not coincide with any note con-
nection rule, and evaluation points for the set of the note
types and the adjacent tones of the second, third, fourth, and
fifth notes of the input motif 108 in the case of i=1 shown
in FIG. 10B is O point, and thus addition to the total
evaluation points corresponding to No. 0 chord progression
data item which is an evaluation target is not performed.

If evaluation on the set of the note types and the adjacent
tones of the second, third, fourth, and fifth notes of the input
motif 108 in the case of i=1 shown in FIG. 10B finishes,
notes which are evaluation targets on the input motif 108 are
further advanced by one, thereby becoming the state of i=2
shown in FIG. 10B, and the chord-progression selecting unit
102 compares the set of note types and adjacent tones of the
third, fourth, fifth, and sixth notes of the input motif 108 with
a set of four note types and adjacent tones of each note
connection rule having the j value 0, 1, 2, 3, . . . and

20

25

35

40

45

50

14

exemplified in FIG. 9, thereby determining whether they
coincide with each other. As a result, it can be seen that the
note connection rule having the j value “3” and shown in
FIG. 9 is appropriate for the set of the note types and the
adjacent tones of the third, fourth, fifth, and sixth notes of the
input motif 108 corresponding to No. O chord progression
data item which is an evaluation target and is shown in FIG.
10C, and 80 points which are evaluation points (ci_Note-
Connect[3][7]) of the note connection rule having the j value
“3” are added to the total evaluation points corresponding to
No. 0 chord progression data item which is an evaluation
target. An expression “«3:80—" written with respect to No.
0 chord progression in FIG. 10C corresponds to that adding
process. As a result, the total evaluation points become 170
points (which is the sum of 90 points and 80 points).

Thereafter, the same process is performed up to evalua-
tion on the set of the note types and the adjacent tones of the
eighth, ninth, and tenth notes of the input motif 108 in a case
of'i=7 shown in FIG. 10B. Also, in the present embodiment,
although evaluation is performed every four notes in prin-
ciple, only in the final case of i=7, with respect to three notes
of the input motif 108, three-note connection rules which
have j values “0” to “8” of FIG. 9 and in which No. 3 note
type is “ci_NullNoteType” are compared.

If the evaluating process on each note of the input motif
108 corresponding to No. 0 chord progression data item
which is an evaluation target and is shown in FIG. 10C
finishes, the total evaluation points calculated at that
moment in association with No. O chord progression data
item which is an evaluation target becomes the matching
level of No. 0 chord progression data item, which is an
evaluation target, for the input motif 108.

For example, in a case where a chord progression data
item which is an evaluation target is No. 1 or 2 chord
progression exemplified in FIG. 3B, the array variable data
item incon[i] of the note types and the adjacent tones
corresponding to the input motif 108 of FIG. 10A corre-
sponding to FIG. 3A becomes a data item shown on the right
side of No. 1 or 2 chord progression in FIG. 10C as
described above with reference to FIG. 8. With respect to
those array variable data items incon[i], the same evaluating
process as that in the case of No. O chord progression
described above is performed. For example, in a case of No.
1 chord progression, since there is no part appropriate for the
note connection rules of FIG. 9 as shown in FIG. 10C, the
total evaluation points thereof becomes 0 point, and this
becomes the matching level of No. 1 chord progression for
the input motif 108. Also, in a case of No. 2 chord progres-
sion, it can be seen that the note connection rule having the
j value “5” and shown in FIG. 9 is appropriate for the set of
the note types and the adjacent tones of the fifth, sixth, and
seventh of the input motif 108, and 95 points which are
evaluation points “ci_NoteConnect[5][7]” of the note con-
nection rule having the j value “5” is added to the total
evaluation points corresponding to No. 2 chord progression
data item which is an evaluation target, and this becomes the
matching level No. 2 chord progression for the input motif
108.

The chord-progression selecting unit 102 of FIG. 1 per-
forms the process of calculating the matching level
described above on the plurality of chord progression data
items retained in the accompaniment/chord-progression DB
103, and outputs Nos. 0, 1, and 2 chord progression candi-
date indication data items 109 indicating chord progression
data items of the top three matching levels, respectively.
Also, in the above described process, since the keys of the
input motif 108 and each chord progression data item

US 9,460,694 B2

15

retained in the accompaniment/chord-progression DB 103
do not necessarily coincide with each other, data items
obtained by performing key shift each chord progression
data item in 12 steps constituting one octave is compared
with the input motif 108.

Subsequently, the outline of an operation of the melody
generating unit 105 of FIG. 1 will be described. First, FIGS.
11A to 11D are views illustrating an example of the data
configuration of the phrase set DB 106 of FIG. 1. As shown
in FIG. 1, in the phrase set DB 106, records of a plurality of
phrase set data items of No. 1, No. 2 . . . are stored, and
finally, an end chord is stored.

A phrase set data item corresponding to one record is
composed of a plurality of phrase data items, that is, an A
melody data item, a B melody data item, a C melody (refrain
melody) data item, a first ending data item, and a second
ending data item, as shown in FIG. 11B.

Each of the phrase data items of FIG. 11B is configured
by a plurality of note data items No. 1, No. 2 . . ., and
contains an end chord at the end, as shown in FIG. 11C. Each
note data item is a data item which corresponds to each of
notes corresponding to one measure or more constituting
each phrase and instructs sound production of the melody
sound of each phrase. As shown in FIG. 11D, one note data
item is composed of “TIME” data which represents the
sound production timing of a note corresponding to that note
data item, for example, by an elapsed time from the start of
the phrase, “LENGTH” data representing the length of the
note, “STRENGTH” data representing the strength of the
note, and “PITCH” data representing the pitch of the note.
These data represent each note constituting the phrase.

If a chord progression candidate is selected from three
chord progression candidates corresponding to Nos. 0, 1,
and 2 chord progression candidate indication data items 109
output from the chord-progression selecting unit 102, by
user’s designation or automatically, the melody generating
unit 105 of FIG. 1 reads a music structure data item (see FI1G.
6) corresponding to the selected chord progression candi-
date, from the accompaniment/chord-progression DB 103.
With respect to each phrase of a measure represented by the
read music structure data item, the melody generating unit
105 automatically generates a melody of the corresponding
phrase with reference to the input motif 108, the phrase sets
(see FIG. 11) registered in the phrase set DB 106, and the
rule DB 104 (see FIG. 9).

In this case, the melody generating unit 105 determines
whether the phrase of a measure represented by the music
structure data item is a phrase of the input motif 108. In a
case where the phase of the measure is the phrase of the
input motif 108, the melody generating unit intactly outputs
the melody of the input motif 108 as a part of the melody
data 110.

In a case where the phrase of the measure represented by
the music structure data item is not a phrase of the input
motif 108 and is not the beginning phrase of the refrain
melody, if a melody for the corresponding phrase has not
been generated yet, the melody generating unit 105 extracts
a phrase set corresponding to the input motif 108 from the
phrase set DB 106, and copies the melody of a correspond-
ing phrase included in the extracted phrase set. Meanwhile,
if a melody for the corresponding phase has been generated,
the melody generating unit copies the melody from the
corresponding phase whose melody has been generated.
Thereafter, the melody generating unit 105 performs a
melody modifying process (to be described below) of modi-
fying the copied melody, and a melody optimizing process
(to be described below) of optimizing the pitch of each note

40

45

50

55

16

constituting the modified melody, thereby automatically
generating the melody of the phrase of the measure repre-
sented by the music structure data item, and outputs the
generated melody as a part of the melody data 110. Details
of the process of copying the melody from the phase having
been already generated will be described with respect to a
description of FIG. 25.

In a case where the phrase of the measure represented by
the music structure data item is the beginning phrase of the
refrain melody, if a beginning phrase for the corresponding
refrain melody has not been generated, the melody gener-
ating unit 105 extracts a phrase set corresponding to the
input motif 108 from the phrase set DB 106, and copies the
melody of the beginning phrase of a corresponding refrain
melody (C melody) included in the extracted phrase set, and
performs the melody optimizing process of optimizing the
pitch of each note constituting the copied melody, thereby
automatically generating the melody of the beginning phrase
of the refrain melody, and outputs the generated melody as
a part of the melody data 110. Meanwhile, if the beginning
phrase of the corresponding refrain melody has been gen-
erated, the melody generating unit copies a melody from the
phrase having been generated, and outputs the copied
melody as a part of the melody data 110.

FIG. 12 is an explanatory view illustrating the flows of the
melody modifying process and the melody optimizing pro-
cess. In a case where a melody has been already generated,
the melody generating unit 105 copies the corresponding
melody, and performs a pitch shifting process of raising the
pitch of each note constituting the copied melody, for
example, by two semitones, for example, as shown by a
reference symbol “1201”. Alternatively, the melody gener-
ating unit 105 performs a process of reversing the left and
right (reproduction order) of the individual notes constitut-
ing the copied melody in the phrase, for example, as shown
by a reference symbol “1202”. The melody generating unit
105 further performs the melody optimizing process shown
by a reference symbol “1203” or “1204” on the melody of
the measure subjected to the melody modifying process as
described above, thereby automatically generating the final
melody.

FIG. 13 is an explanatory view illustrating the detailed
flow of the melody optimizing process. Now, it is assumed
that in a variable iNoteCnt, the number of the notes consti-
tuting the melody of the measure subjected to the melody
modifying process has been stored, and in array data (note
[0]—1Pit, note[1]—iPit, note[2]—iPit, . . . , note[iNoteCnt-
2]—=1iPit, and note[iNoteCnt-1]—iPit), data items on the
pitches of the individual notes described above have been
stored. The melody generating unit 105 first performs pitch
shift on the pitch data “note[i]—=iPit” (0=i=iNoteCnt-1) of
the individual notes by values of five steps such as
ipitd[0]=0, ipitd[1]=1, ipitd[2]=-1, ipitd[3]=2, and
ipitd[4]=-2, thereby generating the total 57°*<" number of
pitch sequences. Thereafter, the melody generating unit 105
performs the same process as that described with reference
to FIGS. 7 to 10 on each pitch sequence, thereby performing
note type acquisition and adjacent tone calculation on a part
corresponding to the measure of the chord progression data
item extracted by the chord-progression selecting unit 102,
and performing the note-connectivity checking process. As
a result, the melody generating unit 105 corrects a pitch
sequence having the highest matching level of the matching
levels calculated with respect to the total 57" number of
pitch sequences, as the pitch data (note[i]—=iPit wherein
O=i=iNoteCnt-1) of the individual notes of the correspond-
ing phrase. The melody generating unit 105 outputs the data

US 9,460,694 B2

17

(note[i] wherein O=i<iNoteCnt-1) of the individual notes of
the corresponding phrase including the pitch sequence gen-
erated as described above, as the melody data 110.

The configuration and operation of the automatic com-
position apparatus 100 described above will be described in
more detail below. FIG. 14 is a view illustrating an example
of the hardware configuration of the automatic composition
apparatus 100 of FIG. 1. The hardware configuration of the
automatic composition apparatus 100 exemplified in FIG. 14
includes a CPU (central processing unit) 1401, a ROM (read
only memory) 1402, a RAM (random access memory) 1403,
an input unit 1404, a display unit 1405, and a sound source
unit 1406 which are connected to one another by a system
bus 1408. Also, the output of the sound source unit 1406 is
input to a sound system 1407.

The CPU 1401 executes an automatic-music-composition
control program stored in the ROM 1402 while using the
RAM 1403 as a work memory, thereby performing a control
operation corresponding to each of the functional parts 101
to 107 of FIG. 1.

In the ROM 1402, besides the above described automatic-
music-composition control program, the accompaniment/
chord-progression DB 103 (see FIGS. 5 and 6), the rule DB
104 (see FIG. 9), and the phrase set DB 106 (see FIG. 11)
of FIG. 1, and the standard pitch class set table (see FIG. 7)
are stored in advance.

The RAM 1403 temporarily stores the input motif 108
(see FIG. 4) input from the motif input unit 101, chord
progression candidate data items 109 output by the chord-
progression selecting unit 102, the melody data 110 output
by the melody generating unit 105, etc. Besides, in the RAM
1403, various variable data items (to be described below)
and so on are temporarily stored.

The input unit 1404 corresponds to the function of a part
of the motif input unit 101 of FIG. 1, and corresponds to, for
example, the keyboard input unit 101-1, the voice input unit
101-2, or the note input unit 101-3. In a case where the input
unit 1404 includes the keyboard input unit 101-1, the input
unit 1404 includes a playing keyboard, and a key matrix
circuit which detects a key depression state of the corre-
sponding playing keyboard and notifies the key depression
state to the CPU 1401 through the system bus 1408. In a case
where the input unit 1404 includes the voice input unit
101-2, the input unit 1404 includes a microphone for input-
ting a singing voice, and a digital signal processing circuit
which converts a voice signal input from the corresponding
microphone into a digital signal, and extracts pitch infor-
mation of the singing voice, and notifies the pitch informa-
tion to the CPU 1401 through the system bus 1408. Also, the
extraction of the pitch information may be performed by the
CPU 1401. In a case where the input unit 1404 includes the
note input unit 101-3, the input unit 1404 includes a key-
board for inputting notes, and a key matrix circuit which
detects a note input state of the corresponding keyboard and
notifies the note input state to the CPU 1401 through the
system bus 1408. The CPU 1401 corresponds to the function
of a part of the motif input unit 101 of FIG. 1, and detects
the input motif 108 based on the variety of information input
from the input unit 1404 of FIG. 14, and stores the input
motif 108 in the RAM 1403.

The display unit 1405 implements the function of the
score display unit 107-1 of the output unit 107 of FIG. 1,
together with a control operation of the CPU 1401. The CPU
1401 generates score data corresponding to the automati-
cally composed melody data 110, and instructs the display
unit 1405 to display the score data. The display unit 1405 is,
for example, a liquid crystal display.

15

20

25

40

45

50

55

60

18

The sound source unit 1406 implements the function of
the musical-sound reproducing unit 107-2 of FIG. 1,
together with a control operation of the CPU 1401. The CPU
1401 generates sound production control data for reproduc-
ing a melody and accompaniment, based on the automati-
cally generated melody data 110 and the MIDI data item for
accompaniment read from the accompaniment/chord-pro-
gression DB 103, and supplies the sound production control
data to the sound source unit 1406. The sound source unit
1406 generates a melody sound and an accompaniment
sound, based on the sound production control data, and
outputs the melody sound and the accompaniment sound to
the sound system 1407. The sound system 1407 converts
digital musical sound data on the melody sound and the
accompaniment sound input from the sound source unit
1406 into an analog musical sound signal, and amplifies the
analog musical sound signal by a built-in amplifier, and
emits a musical sound from a built-in speaker.

FIGS. 15A and 15B are views illustrating a list of various
variable data items, various array variable data items, and
various constant data items which are stored in the ROM
1402 or the RAM 1403. These data items can be used in
various processes to be described below.

FIG. 16 is a flow chart illustrating an example of an
automatic composition process according to the present
embodiment. If the automatic composition apparatus 100 is
powered on, the CPU 1401 starts to execute an automatic
composition process program retained in the ROM 1402,
whereby the automatic composition process starts.

First, in STEP S1601, the CPU 1401 performs initializa-
tion on the RAM 1403 and the sound source unit 1406.
Thereafter, the CPU 1401 repeatedly performs a series of
processes of STEPS S1602 to S1608.

In this repetitive process, first, in STEP S1602, the CPU
1401 determines whether the user has instructed finishing of
the automatic composition process by pressing a power
switch (not specifically shown). If finishing has not been
instructed (“NO” in the determination of STEP S1602), the
CPU 1401 continues the repeating process. Meanwhile, if
finishing has been instructed (“YES” in the determination of
STEP $1602), the CPU 1401 finishes the automatic com-
position process exemplified in the flow chart of FIG. 16.

In the case where the result of the determination of STEP
$1602 is “NO”, in STEP 81603, the CPU 1401 determines
whether the user has instructed motif input from the input
unit 1404. In a case where the user has instructed motif input
(a case where the result of the determination of STEP S1603
is “YES”), in STEP S1606, the CPU 1401 receives motif
input of the user from the input unit 1404, and stores the
input motif 108 input from the input unit 1404, for example,
in the data format of FIG. 4, in the RAM 1403. Thereafter,
the CPU 1401 returns to the process of STEP S1602.

In a case where the user has not instructed motif input (a
case where the result of the determination of STEP S1603 is
“NO”), in STEP S1604, the CPU 1401 determines whether
the user has instructed automatic composition by a switch
(not specifically shown). In a case where the user has
instructed automatic composition (a case where the result of
the determination of STEP S1604 is “YES”), the CPU 1401
performs a chord-progression selecting process in STEP
S1607, and subsequently performs a melody generating
process in STEP S1608. The chord-progression selecting
process of STEP S1607 implements the function of the
chord-progression selecting unit 102 of FIG. 1. The melody
generating process of STEP S1608 implements the function
of the melody generating unit 105 of FIG. 1. Thereafter, the
CPU 1401 returns to the process of STEP S1602.

US 9,460,694 B2

19

In a case where the user has not instructed automatic
composition (a case where the result of the determination of
STEP S1604 is “NO”), in STEP S1605, the CPU 1401
determines whether the user has instructed reproducing of
the automatically composed melody data 110 by a switch
(not specifically shown). In a case where the user has
instructed reproducing of the melody data 110 (a case where
the result of the determination of STEP S1605 is “YES”), the
CPU 1401 performs a reproducing process in STEP S1609.
This process is the same as the operations of the note input
unit 101-3 and the musical-sound reproducing unit 107-2 of
the output unit 107 of FIG. 1 described above.

In the case where the user has not instructed automatic
composition (the case where the result of the determination
of STEP S1604 is “NO”), the CPU 1401 returns to the
process of STEP S1602.

FIG. 17 is a flow chart illustrating a detailed example of
the chord-progression selecting process of STEP S1607 of
FIG. 16.

First, in STEP S1701, the CPU 1401 initializes the
variable data items and the array variable data items on the
RAM 1403.

Subsequently, the CPU 1401 initializes a variable “n” on
the RAM 1403 for controlling a repetitive process on the
plurality of chord progression data items retained in the
accompaniment/chord-progression DB 103, to “0”. There-
after, while incrementing the value of the variable “n”, +1 by
+1, the CPU performs a series of processes of STEPS S1704
to S1713, as long as it is determined in STEP S1703 that the
value of the variable “n” is smaller than the value of a
constant data item MAX_CHORD_PROG retained in the
ROM 1402. The value of the constant data item MAX_
CHORD_PROG is a constant data item representing the
number of chord progression data items retained in the
accompaniment/chord-progression DB 103. The CPU 1401
repeatedly performs the series of processes of STEPS S1704
to S1713, the same number of times as the number of records
of the accompaniment/chord-progression DB 103 shown in
FIG. 5, thereby performing the process of calculating the
matching levels on the plurality of chord progression data
items retained in the accompaniment/chord-progression DB
103, and outputs, for example, Nos. 0, 1, and 2 chord
progression candidate indication data items 109 indicating
chord progression data items of the top three matching levels
for the input motif 108, respectively.

In the repetitive process of STEPS S1703 to S1713, first,
in STEP S1703, the CPU 1401 determines whether the value
of the variable “n” is smaller than the value of the constant
data item MAX_CHORD_PROG.

If the result of the determination of STEP S1703 is
“YES”, in STEP S1704, the CPU 1401 loads No. n chord
progression data item (see FIG. 5A) represented by the
variable data item n, from the accompaniment/chord-pro-
gression DB 103 into a chord progression data area of the
RAM 1403. The data format of No. n chord progression data
item is, for example, the format shown in FIGS. 5B, 5C and
5D.

Subsequently, in STEP S1705, the CPU 1401 determines
whether a value which represents the music genre of No. n
chord progression data item and has been loaded from the
accompaniment/chord-progression DB 103 into an array
variable data element iChordAttribute[n][0] for No. n chord
progression data item in the RAM 1403 is equal to a value
which the user has set in advance by a switch (not specifi-
cally shown) and is retained in a variable data item iJunle-
Select in the RAM 1403 and represents a music genre. If the
result of the determination of STEP S1705 is “NO”, since

5

10

15

20

25

30

35

40

45

50

55

60

65

20

No. n chord progression data item is not suitable for the
music genre which the user desires, the CPU 1401 does not
select No. n chord progression data item, and proceeds to
STEP S1714.

If the result of the determination of STEP S1705 is
“YES”, in STEP S1706, the CPU 1401 determines whether
a value which represents the concept of No. n chord pro-
gression data item and has been loaded from the accompa-
niment/chord-progression DB 103 into an array variable
data element iChordAttribute[n][1] for No. n chord progres-
sion data item in the RAM 1403 is equal to a value which
the user has set in advance by a switch (not specifically
shown) and is retained in a variable data item iConncept-
Select in the RAM 1403 and represents a music concept. If
the result of the determination of STEP S1706 is “NO”,
since No. n chord progression data item is not suitable for
the music concept which the user desires, the CPU 1401
does not select No. n chord progression data item, and
proceeds to STEP S1714.

If the result of the determination of STEP S1706 is
“YES”, in STEP S1707, the CPU 1401 performs a chord-
design-data generating process. In this process, the CPU
1401 performs a process of storing chord progression infor-
mation, sequentially designated according to No. n chord
progression data item with time, in a chord design data item
[k] (to be described below) which is an array variable data
item retained in the RAM 1403.

Subsequently, in STEP S1708, the CPU 1401 stores an
initial value “0” in a variable data item iKeyShift retained in
the RAM 1403. This variable data item iKeyShift designates
a key shift value in semitone units for No. n chord progres-
sion data item, in a range from the initial value “0” to a value
smaller than a constant data item PITCH_CLASS_N
retained in the ROM 1402 by 1, in a chromatic scale of one
octave. The value of the constant data item PITCH_
CLASS_N is generally 12 which is the number of semitones
in one octave.

Subsequently, in STEP S1709, the CPU 1401 determines
whether the value of the constant data item iKeyShift is
smaller than the value of the constant data item PITCH_
CLASS_N.

If the result of the determination of STEP S1709 is
“YES”, in STEP S1710, the CPU 1401 shifts the key of No.
n chord progression data item by the key shift value repre-
sented by the variable data item iKeyShift, and then per-
forms a process of checking the matching level on the input
motif 108 and No. n chord progression. By this process, the
matching level of No. n chord progression for the input
motif 108 is obtained in a variable data item doValue
retained in the RAM 1403.

Subsequently, in STEP S1711, the CPU 1401 determines
whether the value of the variable data item doValue is larger
than the value of a variable data item doMax Value retained
in the RAM 1403. The variable data item doMaxValue is a
variable for storing the value of the highest matching level
at that moment, and is initialized to a value “0” in STEP
S1701.

If the result of the determination of STEP S1711 is
“YES”, the CPU 1401 replaces the value of the variable data
item doMaxValue with the value of the variable data item
doValue. Also, the CPU 1401 stores the current value of the
variable data item iKeyShift in an array variable data item
iBestKeyShift[iBestUpdate] retained in the RAM 1403.
Further, the CPU 1401 stores the current value of the
variable data item n representing a chord progression data
item retained in the accompaniment/chord-progression DB
103, in an array variable data item iBestChordProg

US 9,460,694 B2

21

[iBestUpdate] retained in the RAM 1403. Thereafter, the
CPU 1401 increments a variable data item iBestUpdate
retained in the RAM 1403, by +1 (these processes are
performed in STEP S1712). The variable data item
iBestUpdate is a data item which is initialized to a value “0”
in STEP S1701, and is incremented whenever a chord
progression data item having the highest matching level at
that moment is found. As the value of the variable data item
iBestUpdate increases, the matching level becomes higher.
The array variable data item iBestKeyShift[iBestUpdate]
holds a key shift value corresponding to a ranking repre-
sented by the variable data item iBestUpdate. The array
variable data item iBestChordProg[iBestUpdate| holds the
number of a chord progression corresponding to the ranking
represented by the variable data item iBestUpdate and
retained in the accompaniment/chord-progression DB 103.

If the result of the determination of STEP S1711 is “NO”,
in this time, the CPU 1401 does not select No. n chord
progression data item as a chord progression data item for
automatic composition relative to the input motif 108 by
skipping the process of STEP S1712 described above.

Thereafter, in STEP S1713, the CPU 1401 increments the
value of the variable data item iKeyShift by +1. Then, the
CPU 1401 returns to the process of STEP S1709.

After the CPU 1401 repeatedly performs the processes of
STEPS S1709 to S1713 while incrementing the value of the
variable data item iKeyShift, if key shift value designation
corresponding to one octave finishes, whereby the result of
the determination of STEP S1709 becomes “NO”, the CPU
advances the process to STEP S1714. In STEP S1714, the
CPU 1401 increments the variable data item n for selecting
a chord progression data item retained in the accompani-
ment/chord-progression DB 103, by +1. Thereafter, the CPU
1401 returns to the process of STEP S1703.

After the CPU 1401 repeatedly performs the series of the
processes of STEPS S1703 to S1714 while incrementing the
value of the variable data item n, if the process on every
chord progression data item retained in the accompaniment/
chord-progression DB 103 finishes, whereby the result of
the determination of STEP S1703 becomes “NO”, the CPU
finishes the process of the flow chart of FIG. 17, that is, the
chord-progression selecting process of STEP S1607. As a
result, in array variable data items iBestKeyShift
[iBestUpdate-1] and iBestChordProg[iBestUpdate-1] hav-
ing, as their element numbers, a value “iBestUpdate-1”
smaller than the current value of the variable data item
iBestUpdate by 1, a key shift value and the number of a
chord progression data item having the highest matching
level for the input motif 108 are stored. Also, in array
variable data items iBestKeyShift[iBestUpdate-2] and iBes-
tChordProg[iBestUpdate-2], a key shift value and the num-
ber of a chord progression data item having the second
highest matching level for the input motif 108 are stored.
Further, in array variable data items iBestKeyShift
[iBestUpdate-3] and iBestChordProg[iBestUpdate-3], a key
shift value and the number of a chord progression data item
having the third highest matching level for the input motif
108 are stored. These data item sets correspond to Nos. 0, 1,
and 2 chord progression candidate indication data items 109
of FIG. 1, sequentially from the top ranking.

FIG. 18 is a flow chart illustrating a detailed example of
the chord-design-data generating process of STEP S1707 of
FIG. 17.

First, in STEP 51801, the CPU 1401 sets a variable data
item iCDesignCnt representing the number of a chord pro-
gression information item, to an initial value “0”.

25

30

35

40

45

50

55

22

Subsequently, in STEP S1802, the CPU 1401 stores a
pointer to the first meta-event (corresponding to No. 0 chord
data item of FIG. 5B) loaded, for example, in the data format
shown in FIGS. 5B, 5C and 5D, from the accompaniment/
chord-progression DB 103 into the RAM 1403 in STEP
S1704 of FIG. 17, in a pointer variable data item “mt”
retained in the RAM 1403.

Subsequently, while sequentially storing pointers to the
subsequent meta-events (Nos. 1, 2, . . . chord data items of
FIG. 5B) in the pointer variable data item “mt” in STEP
S1811, the CPU 1401 repeatedly performs a series of
processes of STEPS S1803 to S1811 on each chord data item
(see FIG. 5B) of No. n chord progression data item, until it
is determined in STEP S1803 that the end (“END” of FIG.
5B) has been reached.

In the above-mentioned repetitive process, first, in STEP
S1803, the CPU 1401 determines whether the pointer vari-
able data item “mt” indicates the end.

If the result of the determination of STEP S1803 is “NO”,
in STEP S1804, the CPU 1401 attempts to extract a chord
root and a chord type (see FIG. 5D) from a chord data item
(FIG. 5B) indicated by the pointer variable data item “mt”,
and store them in variable data items “root” and “type”
retained in the RAM 1403. Then, in STEP S1805, the CPU
1401 determines whether the storing process of STEP S1804
has been successful.

In a case where the storing process of STEP S1804 has
been successful (a case where the result of the determination
of STEP S1805 is “YES”), the CPU 1401 stores a time
information item “mt—iTime” (“TIME” data of FIG. 5D)
stored in a storage area indicated by the pointer variable data
item “mt”, in a time item cdesign[iCDesignCnt]—iTime of
a chord design data item having the current value of the
variable data item iCDesignCnt as its element number. Also,
the CPU 1401 stores the chord root information stored in the
variable data item “root” in STEP S1804, in a chord root
item cdesign[iCDesignCnt]—iRoot of the chord design data
item having the current value of the variable data item
iCDesignCant as its element number. Further, the CPU 1401
stores the chord type information stored in the variable data
item “type” in STEP S1804, in a chord root item cdesign
[i1CDesignCnt]—iType of the chord design data item having
the current value of the variable data item iCDesignCnt as its
element number. Furthermore, the CPU 1401 stores an
invalid value “-1” in a key item cdesign[iCDesign
Cnt]—iKey and a scale item cdesign[iCDesignCnt|—iScale
of'the chord design data item having the current value of the
variable data item iCDesignCnt as its element number (these
processes are performed in STEP S1806). Thereafter, the
CPU 1401 proceeds to the process of STEP 51810 in which
the CPU increments the value of the variable data item
iCDesignCnt by +1.

In a case where the storing process of STEP S1804 has not
been successful (a case where the result of the determination
of STEP S1805 is “NO”), in STEP S1807, the CPU 1401
attempts to extract a scale and a key (see FIG. 5C) from the
chord data item (FIG. 5B) indicated by the pointer variable
data item “mt”, and store them in variable data items “scale”
and “key” retained in the RAM 1403. Then, in STEP S1808,
the CPU 1401 determines whether the storing process of
STEP S1807 has been successful.

In a case where the storing process of STEP S1807 has
been successful (a case where the result of the determination
of STEP S1808 is “YES”), the CPU 1401 stores a time
information item “mt—iTime” (“TIME” data of FIG. 5D)
stored in a storage area indicated by the pointer variable data
item “mt”, in a time item cdesign[iCDesignCnt]—iTime of

US 9,460,694 B2

23

a chord design data item having the current value of the
variable data item iCDesignCnt as its element number. Also,
the CPU 1401 stores the key information stored in the
variable data item ‘“key” in STEP S1807, in a key item
cdesign[iCDesignCnt]—iKey of the chord design data item
having the current value of the variable data item
iCDesignCnt as its element number. Further, the CPU 1401
stores the scale information stored in the variable data item
“scale” in STEP S1807, in a scale item cdesign
[iCDesignCnt]—iScale of the chord design data item having
the current value of the variable data item iCDesignCnt as its
element number. Furthermore, the CPU 1401 stores an
invalid value “-1” in a chord root item cdesign
[iCDesignCnt]—iRoot and a chord type item cdesign
[iCDesignCnt]—iType of the chord design data item having
the current value of the variable data item iCDesignCnt as its
element number (these processes are performed in STEP
S1809). Thereafter, the CPU 1401 proceeds to the process of
STEP 51810 in which the CPU increments the value of the
variable data item iCDesignCnt by +1.

After the CPU 1401 increments the value of the variable
data item iCDesignCnt in STEP 51810, or in a case where
the storing process of STEP S1807 has not been successful
(a case where the result of the determination of STEP S1808
is “NO”), the CPU stores pointers to the subsequent meta-
events (Nos. 1, 2, . . . chord data items of FIG. 5B) in the
pointer variable data item “mt” in STEP S1811, and returns
to the determining process of STEP S1803.

If the CPU 1401 reads the chord data items relative to No.
n chord progression data item which is the current target up
to the end (see FIG. 5B) as the result of the repetitive process
of STEPS S1803 to S1811, the result of the determination of
STEP S1803 becomes “YES”. Therefore, the CPU finishes
the process exemplified in the flow chart of FIG. 18, that is,
the chord-design-data generating process of STEP S1707 of
FIG. 17. At this moment, the number of chord information
items constituting No. n chord progression data item is
obtained in the variable data item iCDesignCnt, and chord
information items are stored in the chord design data items
cdesign[0] to cdesign[iCDesignCnt-1], respectively.

FIG. 19 is a flow chart illustrating a detailed example of
the process of STEP S1710 of FIG. 17 for checking the
matching level of No. n chord progression for the input
motif 108.

First, in STEP 51901, the CPU 1401 sets an initial value
“0” in the variable data item doValue representing the
matching level.

Subsequently, in STEP S1902, the CPU 1401 reads a
measure start time data item iPartTime[M] retained in a
beginning measure record having an item “PartTime[M]”
(see FIG. 6) set to the same phrase type as a phrase type
designated by the user during inputting of the input motif
108, from the accompaniment/chord-progression DB 103,
with reference to No. n music structure data item (see FIG.
5A) corresponding to No. n chord progression data item
loaded in STEP S1704, and stores the measure start time
data item iPartTime[M] in a variable data item “sTime”
retained in the RAM 1403.

Subsequently, in STEP 51903, the CPU 1401 sets the
value of the variable data item iNoteCnt indicating the order
of the notes constituting the input motif 108, to an initial
value “0”.

Subsequently, in STEP S1904, the CPU 1401 stores a
pointer to the first note data item (corresponding to No. 0
note data item of FIG. 4A) of the input motif 108 input in

20

40

45

55

60

24

the data format of FIG. 4 to the RAM 1403 in STEP S1606
of FIG. 16, in a pointer variable data item “me” retained in
the RAM 1403.

Subsequently, while sequentially storing pointers to the
subsequent note data items (Nos. 1, 2 . . . note data items of
FIG. 4A) of the input motif 108 in the pointer variable data
item “me” in STEP S1909, the CPU 1401 repeatedly per-
forms a series of processes of STEPS S1905 to S1909 on
each note data item (see FIG. 4A) of the input motif 108,
until it is determined in STEP S1905 that the end (“END” of
FIG. 4B) has been reached.

In the above-mentioned repetitive process, first, in STEP
S1905, the CPU 1401 determines whether the pointer vari-
able data item “me” indicates the end.

If the result of the determination of STEP S1905 is “NO”,
in STEP S1906, with reference to the “TIME” data
“me—iTime” of the note data item (FIG. 4B) indicated by
the pointer variable data item “me”, the CPU 1401 adds the
measure start time “sTime” obtained with respect to the
corresponding measure of the input motif 108 in STEP
S1902, to the value of the “TIME” data “me—iTime”, and
newly overwrites the “TIME” data “me—iTime” with the
obtained result. Since the “TIME” data of each note data
item constituting the input motif 108 is a time from the
beginning of the input motif 108 composed of two measures,
in order to convert the “TIME” data into a time from the
beginning of the piece of music, the measure start time
“sTime” obtained with respect to the corresponding measure
of the input motif 108 from the music structure data item in
STEP S1902 is added.

Subsequently, in STEP S1907, the CPU 1401 stores the
value of the pointer variable data item “me” in a note pointer
array variable data item note[iNoteCnt] which is an array
variable data item having the current value of the variable
data item iNoteCnt as its element value.

Thereafter, in STEP S1908, the CPU 1401 increases the
value of the variable data item iNoteCnt by +1. Subse-
quently, the CPU 1401 stores pointers to the subsequent note
data items (Nos. 1, 2 . . . note data items of FIG. 4A) of the
input motif 108, in the pointer variable data item “me”, in
STEP S1909, and returns to the determining process of
STEP S1905.

If the CPU 1401 reads the note data items of the input
motif 108 up to the end (see FIG. 4A) as the result of the
repetitive process of STEPS S1905 to S1909, the result of
the determination of STEP S1905 becomes “YES”. There-
fore, the CPU proceeds to the checking process of STEP
S1910. In this checking process, the process of calculating
the matching level of No. n chord progression for the input
motif 108 is performed, and the calculation result is obtained
in the variable doValue. Thereafter, the CPU finishes the
process exemplified in the flow chart of FIG. 19, that is, the
process of STEP S1710 of FIG. 17 for checking the match-
ing level of No. n chord progression for the input motif 108.
At this time, the number of the notes (corresponding to the
number of notes of FIG. 3A) constituting the input motif 108
is stored in the variable data item iNoteCnt, and pointers to
the note data items are obtained in note pointer array
variable data items note[0O] to note[iNoteCnt-1], respec-
tively.

FIG. 20 is a flow chart illustrating a detailed example of
the checking process of STEP S1910 of FIG. 19.

First, in STEP S2001, the CPU 1401 stores an initial value
“0” in a variable “1” which is retained in the RAM 1403 and
is for counting the number of notes of the input motif 108.
Thereafter, while incrementing the value of the variable “1”
+1 by +1, in STEP S2008, the CPU performs a series of

US 9,460,694 B2

25
processes of STEPS S2002 to S2008, as long as it is
determined in STEP S2002 that the value of the variable “1”
is smaller than the value of the variable data item iNoteCnt
representing the number of notes of the input motif 108 and
finally obtained in the process of FIG. 19.

In the repetitive process of STEPS S2002 to S2008, first,
in STEP S2002, the CPU 1401 determines whether the value
of the variable “i” is smaller than the value of the variable
data item iNoteCnt.

If the result of the determination of STEP S2002 is
“YES”, in STEP S2003, the CPU 1401 reads a pitch item
value “note[i]—iPit” (indicating the value of the “PITCH”
item of FIG. 4B) from a note pointer array variable data item
note[i] corresponding to the i-th process target note indi-
cated by the variable data item “i”, and stores the read value
in an array variable data item ipit[i] retained in the RAM
1403 and representing a pitch information sequence and
having the value of the variable data item “i” as its element
value.

Subsequently, in STEP S2004, the CPU 1401 performs a
process of obtaining a chord information item corresponding
to the timing of the current process target note of the input
motif 108. In this process, the chord root, chord type, scale,
and key of a chord which should be designated at the sound
production timing of the current process target note of the
input motif 108 are obtained in the variable data items
“root”, “type”, “scale”, and “key”.

Subsequently, in STEP S2005, the CPU 1401 performs a
note-type acquiring process. In this process, a note type of
a pitch “ipit[i]” corresponding to the i-th note of the input
motif 108 which is the current process target and related to
No. n chord progression data item which is the current
evaluation target is obtained in an array variable data item
incon[ix2] (an even-numbered element) of note types and
adjacent tones retained in the RAM 1403 and described
above with reference to FIG. 8.

Subsequently, in STEP S2006, the CPU 1401 determines
whether the value of the variable “i” is larger than 0, that is,
whether the process target note is a note other than the
beginning note.

In a case where the result of the determination of STEP
S2006 is “YES”, in STEP S2007, the CPU 1401 subtracts
pitch information “ipit[i-1]" corresponding to the (i-1)-th
process target note, from the pitch information “ipit[i]”
corresponding to the i-th process target note indicated by the
variable data item “i”, thereby obtaining an adjacent tone
described above with reference to FIG. 8 in an array variable
data item incon[ix2-1] (an odd-numbered element) of note
types and adjacent tones.

In a case where the result of the determination of STEP
S2006 is “NO” (a case where the process target note is the
beginning note), the CPU 1401 skips the process of STEP
S2007.

Thereafter, the CPU 1401 increments the value of the
variable “i” by +1 in STEP S2008, and proceeds to a process
on the next note of the input motif 108, and returns to the
determining process of STEP S2002.

After the CPU 1401 repeatedly performs the series of
STEPS S2002 to S2008 while incrementing the value of the
variable data item “1”, if the process on every note data item
constituting the input motif 108 finishes, the result of the
determination of STEP S2002 becomes “NO”. Then, the
CPU proceeds to the note-connectivity checking process of
STEP S2009. At this time, sets of note types and adjacent
tones described above with reference to FIG. 8 are obtained
in the array variable data items incon[ix2] (O=<i=iNoteCnt-1)
and incon[ix2-1] (1=i=iNoteCnt-1). Then, the CPU 1401

20

25

35

40

45

50

55

26

performs the note-connectivity checking process of STEP
S2009 based on those data items, thereby obtaining the
matching level of No. n chord progression data item, which
is an evaluation target, for the input motif 108, as the
variable data item doValue. Thereafter, the CPU 1401 fin-
ishes the process exemplified in the flow chart of FIG. 20,
that is, the checking process of STEP S1910 of FIG. 19.

FIG. 21 is a flow chart illustrating a detailed example of
the process of STEP S2004 of FIG. 20 to acquire a chord
information item corresponding to the timing of the current
note of the input motif 108.

First, in STEP S2101, the CPU 1401 stores an initial value
“0” in a variable “k” which is retained in the RAM 1403 and
is for counting the number of information items of a chord
design data item. Thereafter, while incrementing the value of
the variable “k”, +1 by +1, in STEP S2107, the CPU
performs a series of processes of STEPS S2102 to S2107, as
long as it is determined in STEP S2102 that the value of the
variable “k” is smaller than the value of the variable data
item iCDesignCnt representing the number of chord infor-
mation items constituting No. n chord progression data item
which is the current evaluation target and finally obtained in
the process of FIG. 18.

In the repetitive process of S2102 to S2107, first, in STEP
S2102, the CPU 1401 determines whether the value of the
variable “k” is smaller than the value of the variable data
item iCDesignCnt.

If the result of the determination of STEP S2102 is
“YES”, in STEP S2103, the CPU 1401 determines whether
a time item value “note[i]—=iTime” indicated by a note
pointer array variable data item of a note which is the current
process target is larger than the value of the time item
“cdesign[k|—=iTime” of the k-th chord design data item
indicated by the variable “k” and is smaller than the value of
a time item “cdesign[k+1]—=iTime” of the (k+1)-th chord
design data item, and each value of the key item “cdesign
[k]—=iKey” and scale item “cdesign[k]—=iScale” of the k-th
chord design data item has been set to a significant value
equal to or larger than O (see STEPS S1806 and S1808 of
FIG. 18).

If the result of the determination of STEP S2103 is
“YES”, it is possible to determine that a chord information
item according to the k-th chord design data item cdesign[k]
has been designated at the sound production timing of the
note “note[i]” which is the current process target of the input
motif 108. Therefore, in STEP 52104, the CPU 1401 stores
the values of the key item “cdesign[k]—=iKey” and the scale
item “cdesign[k]—=iScale” of the k-th chord design data item
in the variable data items “key” and “scale”, respectively.

If the result of the determination of STEP S2103 is “NO”,
the CPU 1401 skips the process of STEP 52104.

Subsequently, in STEP 52105, the CPU 1401 determines
whether a time item value “note[i]—iTime” indicated by a
note pointer array variable data item of a note which is the
current process target is larger than the value of the time item
“cdesign[k|—=iTime” of the k-th chord design data item
indicated by the variable “k” and is smaller than the value of
a time item “cdesign[k+1]—=iTime” of the (k+1)-th chord
design data item, and each value of the chord root item
“cdesign[k]—=iRoot” and the chord type item
“cdesign[k]|—=1Type” of the k-th chord design data item has
been set to a significant value equal to or larger than O (see
STEPS S1806 and S1808 of FIG. 18).

If the result of the determination of STEP 52105 is
“YES”, it is possible to determine that a chord information
item according to the k-th chord design data item cdesign[k]
has been designated at the sound production timing of the

US 9,460,694 B2

27
note “note[i]” which is the current process target of the input
motif 108. Therefore, in STEP 52106, the CPU 1401 stores
the values of the root item “cdesign[k]—iRoot” and the type
item “cdesign[k]—iType” of the k-th chord design data item
in the variable data items “root” and “type”, respectively.

If the result of the determination of STEP 52105 is “NO”,
the CPU 1401 skips the process of STEP 52106.

After the above described process, the CPU 1401 incre-
ments the value of the variable “k” by +1 in STEP S2107,
and proceeds to a process on the next chord design data item
cdesign[k], and returns to the determining process of STEP
S2102.

After the CPU 1401 repeatedly performs the series of
STEPS S2102 to S2107 while incrementing the value of the
variable data item “k”, if the process on every chord design
data items finishes, the result of the determination of STEP
S2102 becomes “NO”. Then, the CPU finishes the process
exemplified in the flow chart of FIG. 21, that is, the process
of STEP S2004 of FIG. 20. As a result, chord information
items corresponding to the sound production timing of the
current process target note of the input motif 108 are
obtained in the variable data items “root” and “type” and the
variable data items “scale” and “key”.

FIG. 22 is a flow chart illustrating a detailed example of
the note-type acquiring process of STEP S2005 of FIG. 20.
This process is a process of acquiring the note type of the
current note “notes[i]” of the input motif 108 according to a
pitch “ipit[i]” which has been set in STEP S2003 of FIG. 20
and corresponds to the current note notes[i] of the input
motif 108, and a key “key”, a scale “scale”, a chord root
“root”, and a chord type “type” constituting the chord
progression which has been calculated in STEP S2004 of
FIG. 20 and corresponds to the sound production timing of
the current note “notes[i]” of the input motif 108.

First, in STEP 52201, the CPU 1401 acquires a chord tone
pitch class set corresponding to the chord type “type”
calculated in STEP S2004 of FIG. 20, from a chord tone
table included in the standard pitch class set table stored in
the ROM 1402 and having the data configuration exempli-
fied in FIG. 7A, and stores the acquired chord tone pitch
class set in a variable data item “pcs1” retained in the RAM
1403. Hereinafter, the value of the variable data item “pcs1”
will be referred to as the chord tone pitch class set “pcs1”.

Subsequently, in STEP 52202, the CPU 1401 acquires a
tension tone pitch class set corresponding to the above-
mentioned chord type “type”, from a tension tone table
included in the standard pitch class set table stored in the
ROM 1402 and having the data configuration exemplified in
FIG. 7B, and stores the acquired tension tone pitch class set
in a variable data item “pcs2” retained in the RAM 1403.
Hereinafter, the value of the variable data item “pcs2” will
be referred to as the tension tone pitch class set “pcs2”.

Subsequently, in STEP 52203, the CPU 1401 acquires a
scale tone pitch class set corresponding to the scale “scale”
obtained in STEP S2004 of FIG. 20, from a scale tone table
included in the standard pitch class set table stored in the
ROM 1402 and having the data configuration exemplified in
FIG. 7C, and stores the acquired scale tone pitch class set in
a variable data item “pcs3” retained in the RAM 1403.
Hereinafter, the value of the variable data item “pcs3” will
be referred to as the scale tone pitch class set “pcs3”.

Subsequently, in STEP 52204, the CPU 1401 calculates
the tone of the pitch “ipit[i]”, obtained in STEP S2003 of
FIG. 20 with respect to the note “notes[i]” of the current
process target of the input motif 108, relative to the chord
root “root” in a case of mapping the pitch “ipit[i]” to any one
of the zeroth to eleventh scale constituent notes of one

20

25

40

45

50

28

octave in a case of setting the chord root “root” as the zeroth
scale constituent note, by the following expression, and
stores the calculated tone in a variable data item “pcl”
retained in the RAM 1403. Hereinafter, the value of the
variable data item “pc1” will be referred to as the input motif
pitch class “pcl™.

pcl=(ipit[i]-root+12)mod 12 (€8]

Also, “mod 12” means the remainder obtained by divid-
ing a value corresponding to the parentheses on the left of
“mod 12” by 12.

Similarly, in STEP 52205, the CPU 1401 calculates the
tone of the pitch “ipit[i]”, obtained in STEP S2004 of FIG.
20 with respect to the current note “notes[i]” of the input
motif 108, relative to the key “key” in a case of mapping the
pitch “ipit[i]” to any one of the zeroth to eleventh scale
constituent notes of one octave in a case of setting the key
“key” as the zeroth scale constituent note, by the following
expression, and stores the calculated tone in a variable data
item “pc2” retained in the RAM 1403. Hereinafter, the value
of'the variable data item “pc2” will be referred to as the input
motif pitch class “pc2”.

pe2=(ipit[i]-key+12)mod 12 @

Subsequently, in STEP 52206, the CPU 1401 determines
whether the input motif pitch class “pcl” is included in the
chord tone pitch class set “pcsl”. This determination calcu-
lation process is implemented as a calculation process of
taking the logical AND of the pcl-th power of 2 (27<') and
each pitch of the chord tone pitch class set “pesl” (see FIG.
7A) and determining whether the obtained result is equal to
27t

If the result of the determination of STEP 52206 is
“YES”, in STEP 52207, the CPU 1401 determines that the
note type is “CHORD TONE”, and reads the value of the
constant data item ci_ChordTone representing “CHORD
TONE”, from the ROM 1402, and stores the read value in
the location incon[ix2] of the note type element of the array
of note types and adjacent tones. Thereafter, the CPU 1401
finishes the process exemplified in the flow chart of FIG. 22,
that is, the note-type acquiring process of STEP S2005 of
FIG. 20.

If the result of the determination of the STEP 52206 is
“NO”, in STEP 52208, the CPU 1401 determines whether
the input motif pitch class “pcl” is included in the tension
tone pitch class set “pcs2” and the input motif pitch class
“pc2” is included in the scale tone pitch class set “pcs3”.
This determination calculation process is implemented as a
calculation process of taking the logical AND of the pcl-th
power of 2 (27!) and each pitch of the tension tone pitch
class set “pcs2” (see FIG. 7B), and determining whether the
obtained result is equal to 27!, and taking the logical AND
of the pc2-th power of 2 (27°%) and each pitch of the scale
tone pitch class set “pcs3” (see FIG. 7C), and determining
whether the obtained result is equal to 27,

If the result of the determination of STEP 52208 is
“YES”, in STEP 52209, the CPU 1401 determines that the
note type is “AVAILABLE NOTE”, and reads the value of
a constant data item ci_AvailableNote representing “AVAIL-
ABLE NOTE”, from the ROM 1402, and stores the read
value in the location incon[ix2] of the note type element of
the array of note types and adjacent tones. Thereafter, the
CPU 1401 finishes the process exemplified in the flow chart
of FIG. 22, that is, the note-type acquiring process of STEP
S2005 of FIG. 20.

If the result of the determination of the STEP 52208 is
“NO”, in STEP 52210, the CPU 1401 determines whether

US 9,460,694 B2

29

the input motif pitch class “pc2” is included in the scale tone
pitch class set “pcs3”. This determination calculation pro-
cess is implemented as a calculation process of taking the
logical AND of the pc2-th power of 2 (27°%) and each pitch
of the scale tone pitch class set “pcs3” (see FIG. 7C) and
determining whether the obtained result is equal to 27°2,

If the result of the determination of STEP 52210 is
“YES”, in STEP 52211, the CPU 1401 determines that the
note type is “SCALE NOTE”, and reads the value of a
constant data item ci_ScaleNote representing “SCALE
NOTE”, from the ROM 1402, and stores the read value in
the location incon[ix2] of the note type element of the array
of note types and adjacent tones. Thereafter, the CPU 1401
finishes the process exemplified in the flow chart of FIG. 22,
that is, the note-type acquiring process of STEP S2005 of
FIG. 20.

If the result of the determination of the STEP 52210 is
“NO”, in STEP 52212, the CPU 1401 determines whether
the input motif pitch class “pcl” is included in the tension
tone pitch class set “pcs2”. This determination calculation
process is implemented as a calculation process of taking the
logical AND of the pcl-th power of 2 (27°1) and each pitch
of the tension tone pitch class set “pcs2” (see FIG. 7B) and
determining whether the obtained result is equal to 27!,

If the result of the determination of STEP 52212 is
“YES”, in STEP 52213, the CPU 1401 determines that the
note type is “TENSION NOTE”, and reads the value of a
constant data item ci_TensionNote representing “TENSION
NOTE”, from the ROM 1402, and stores the read value in
the location incon[ix2] of the note type element of the array
of note types and adjacent tones. Thereafter, the CPU 1401
finishes the process exemplified in the flow chart of FIG. 22,
that is, the note-type acquiring process of STEP S2005 of
FIG. 20.

Finally, if the result of the determination of STEP 52212
is “NO”, in STEP 52214, the CPU 1401 determines that the
note type is “AVOID NOTE”, and reads the value of a
constant data item ci_AvoiNote representing “AVOID
NOTE”, from the ROM 1402, and stores the read value in
the location incon[ix2] of the note type element of the array
of note types and adjacent tones. Thereafter, the CPU 1401
finishes the process exemplified in the flow chart of FIG. 22,
that is, the note-type acquiring process of STEP S2005 of
FIG. 20.

By the note-type acquiring process of STEP S2005 of
FIG. 20 exemplified in the flow chart of FIG. 22 described
above, the note type of the current note “notes[i]” of the
input motif 108 is acquired in the location incon[ix2] (see
FIG. 7B) of the note type element of the array of note types
and adjacent tones.

FIG. 23 is a flow chart illustrating a detailed example of
the note-connectivity checking process of FIG. 20. This
process implements the process described above with ref-
erence to FIG. 10.

First, in STEP S2301, the CPU 1401 stores an initial value
“0” in a variable data item iTotalValue retained in the RAM
1403. This data item holds the total evaluation points for
calculating the matching level of No. n chord progression
data item (see STEP S1704 of FIG. 17), which is the current
evaluation target, for the input motif 108.

Subsequently, in STEP S2302, the CPU 1401 stores an
initial value “0” in the variable data item “i”. Thereafter,
while incrementing the variable data item “i”, +1 by +1, in
STEP S2321, the CPU repeatedly performs a series of
processes of STEPS S2303 to S2321, as long as the result of
the determination of STEP S2303 is “YES”, that is, it is
determined that the value of the variable data item “i” is

10

20

25

30

35

40

45

50

55

60

65

30

smaller than a value obtained by subtracting 2 from the value
of the variable data item iNoteCnt. This repetitive process
corresponds to the repetitive process on each note of the
input motif 108 of FIG. 10B from i=0 to i=7.

In a series of processes of STEPS S2304 to S2320 which
is performed on each i-th note of the input motif 108, first,
in STEP S2304, the CPU 1401 stores an initial value “0” in
a variable data item iValue retained in the RAM 1403.
Subsequently, in STEP S2306, the CPU 1401 stores an
initial value “0” in a variable data item “j”. Thereafter, while
incrementing the variable data item “4”, +1 by +1, in STEP
S2318, the CPU 1401 repeatedly performs a series of
processes of STEPS S2307 to S2319, until the result of the
determination of STEP S2307 becomes “YES”, that is, the
value of the variable data item “” reaches its end value. This
repetitive process corresponds to the repetitive process of
checking each note connection rule of FIG. 9 determined by
the value of the variable data item “” for each i-th note.

In a series of processes of STEP S2308 to S2316 to check
the j-th note connection rule for each i-th note of the input
motif 108, in STEP S2308, the CPU 1401 stores an initial
value “0” in a variable data item “k” retained in the RAM
1403. Subsequently, while incrementing the variable data
item “k”, +1 by +1, in STEP S2315, the CPU repeatedly
performs a series of processes of STEPS S2309 to S2315.
By this repetitive process, it is determined whether four note
types incon[ix2], incon[ix2+2], incon[ix2+4], and incon[ix
2+6] corresponding to four consecutive notes from the i-th
note of the input motif 108 coincide with four note types
ci_NoteConnect[j][0], ci_NoteConnect[j][2], ci_NoteCon-
nect[j][4], and ci_NoteConnect[j][6] included in the j-th
note connection rule exemplified in FIG. 9, respectively.
Also, it is determined whether three adjacent tones incon[ix
2+1], incon[ix2+3], and incon[ix2+5] relative to the four
consecutive notes from the i-th note of the input motif 108
coincide with three adjacent tones ci_NoteConnect[j][1],
ci_NoteConnect[j][3], and ci_NoteConnect[j][5] included in
the j-th note connection rule exemplified in FIG. 9, respec-
tively.

After a process of repeatedly performing the series of the
processes of STEPS S2309 to S2315 four times while
incrementing the value of the variable data item “k” from O
to 3 is performed as the process of comparing four consecu-
tive notes from the i-th note of the input motif 108 with the
j-th note connection rule of FIG. 9, if any one of the
conditions of STEPS S2310, S2312, S2314 is satisfied, the
j-th note connection rule which is the current target is not
appropriate for the input motif 108. Therefore, the CPU
proceeds to STEPS S2319 in which the CPU increments the
value of the variable data item “j”, whereby the process
transitions to suitability evaluation on the next note connec-
tion rule.

Specifically, in STEP S2310, the CPU 1401 determines
whether the note type incon[ix2+kx2] of the (i+k)-th note of
the input motif 108 is different from the k-th note type
ci_NoteConnect[j][kx2] of the j-th note connection rule. If
the result of the determination of STEP S2310 is “YES”,
since at least one note type of the corresponding note
connection rule does not coincide with at least one of the
note types of the four notes starting with the i-th note (the
current process target) of the input motif 108, the CPU 1401
proceeds to STEP S2319.

If the result of the determination of STEP S2310 is “NO”,
STEPS S2311 and S2312 (to be described below) are
performed. When both of the determination results of
STEPS S2311 and S2312 are “NO”, if the value of the
variable data item “k” is smaller than 3, the result of the

US 9,460,694 B2

31

determination of STEP S2313 becomes “YES”, and thus the
CPU 1401 performs an adjacent tone determining process in
STEP S2314. The determination of STEP S2313 is per-
formed for performing the adjacent tone determining pro-
cess only in a range in which the value of the variable data
item “k” is any one of 0 to 2 since there is no adjacent tone
from the fourth note (wherein k=3) of the input motif 108.
In STEP S2314, the CPU 1401 determines whether an
adjacent tone incon[ix2+kx2+1] between the (i+k)-th note
and (i+k+1)-th note of the input motif 108 is different from
an adjacent tone ci_NoteConnect[j][kx2+1] between the
k-th note type and (k+1)-th note type of the j-th note
connection rule, and the value of the adjacent tone ci_No-
teConnect[j|[kx2+1] is different from “99”. The adjacent
tone value “99” represents that the corresponding adjacent
tone can have any value. If the result of the determination of
STEP S2314 is “YES”, since at least one adjacent tone of the
corresponding note connection rule does not coincide with at
least one of adjacent tones of four notes starting with the i-th
note (the current process target) of the input motif 108, and
thus the CPU 1401 proceeds to STEP S2319.

In the above described series of processes, if coincidence
of the note type incon[ix2+kx2] of the (i+k)-th note of the
input motif 108 and the k-th note type ci_NoteConnect][j]
[kx2] of the j-th note connection rule is detected in STEP
S2310, whereby the result of the determination of STEP
S2310 becomes “NO”, in STEP S2311, the CPU 1401
determines whether the (k+1)-th note type ci_NoteConnect
[[1[kx2+2] next to the k-th note type of the j-th note
connection rule is “ci_NullNoteType”.

The value “ci_NullNoteType” is set as the note type
ci_NoteConnect[j][6] in a case of k=3 in the note connection
rules from j=0 to j=8 shown in FIG. 9. Therefore, the case
where the result of the determination of STEP S2311
becomes “YES” is a case where the range of the value of the
variable data item *§” is from O to 8 and coincidence of note
types and adjacent tones is determined with respect to three
notes in which the value of the variable data item “k” is O,
1, or 2, whereby k is 2. As described above, since the note
connection rules of the range where the variable data item
“” is any one of O to 8 are three-note rules, the fourth note
becomes “ci_NullNoteType” and thus does not need to be
evaluated. Therefore, in the case where the result of the
determination of STEP S2311 becomes “YES”, the note
connection rule at that moment is suitable for three notes
starting with the i-th note of the input motif 108. Therefore,
if the result of the determination of STEP S2311 becomes
“YES”, the CPU 1401 proceeds to STEP S2316 in which the
CPU accumulates the evaluation points ci_NoteConnect][j]
[7] (see F1G. 9) of the corresponding note connection rule in
the variable data item iValue.

Meanwhile, in a case where the result of the determination
of STEP S2311 becomes “NO”, the CPU proceeds to the
adjacent tone evaluating process of STEP S2314 through
STEPS S2312 and S2313. Here, immediately after the result
of the determination of STEP S2311 becomes “NO”, in
STEP S2312, the CPU 1401 determines whether the value of
the variable data item “i” is equal to a value obtained by
subtracting 3 from the value of the variable data item
iNoteCnt representing the number of notes of the input motif
108, and the value of the variable data item “k” is equal to
2. In this case, a note of the input motif 108 to be a process
target becomes the (i+k)-th note, that is, the (iNoteCnt-3+
2=iNoteCnt-1)-th note, that is, the final note of the input
motif 108. In this state, in STEP S2311, in a case where the
value of the (k+1)-th note type ci_NoteConnect[j][kx2+2],
that is, the note type ci_NoteConnect[j][6] does not become

10

15

20

25

30

35

40

45

50

55

60

65

32

ci_NullNoteType is a case where a note connection rule of
FIG. 9 having a j value equal to or larger than 9 is being
processed. That is, the note connection rule is a rule relative
to four notes. Meanwhile, in this case, notes of the input
motif 108 which are process targets are three notes from the
(iNoteCnt-3)-th note to the (iNoteCnt-1)-th note which is the
final note. Therefore, in this case, since the number of the
notes of the input motif 108 which are process targets does
not coincide with the number of notes of the note connection
rule, the corresponding note connection rule is not suitable
for the input motif 108. Therefore, in the case where the
result of the determination of STEP S2312 becomes “YES”,
the CPU 1401 proceeds to STEP S2319 without performing
suitability evaluation on the corresponding note connection
rule.

If the series of processes of STEPS S2309 to S2315 is
repeatedly performed four times without satisfying any one
of the conditions of STEPS S2310, S2311, S2312, and
S2314 described above, whereby the result of the determi-
nation STEP S2309 becomes “NO”, with respect to four
consecutive notes from the i-th note of the input motit 108,
all of the note types and the adjacent tones are suitable for
the note types and adjacent tones of the j-th note connection
rule which is the current evaluation target. In this case, the
CPU 1401 proceeds to STEP S2316 in which the CPU
accumulates the evaluation points ci_NoteConnect[j][7] (see
FIG. 9) of the j-th note connection rule which is the current
evaluation target, in the variable data item iValue.

Also, the number of note connection rules which are
suitable for the input motif 108 is not always one. For
example, the input motif may be suitable not only for a note
connection rule for three notes but also for a note connection
rule for four notes. Therefore, while the CPU 1401 incre-
ments the value of the variable data item “j” in STEP S2319,
whenever the result of the determination of STEP S2309
becomes “NO” or the result of the determination of STEP
S2311 becomes “YES”, whereby it is determined that a
corresponding note connection rule is suitable, the evalua-
tion points ci_NoteConnect[j][7] of the new suitable note
connection rule is accumulated in the variable data item
iValue, until evaluation on every note connection rule in
STEP S2307 is completed.

Thereafter, the CPU 1401 increments the value of the
variable data item “§” by +1 in STEP S2319, thereby
proceeding to evaluation on the next note connection rule,
and returns to the determining process of STEP S2307.

If evaluation on every note connection rule is completed,
whereby the result of the determination of STEP S2307
becomes “YES”, in STEP S2320, the CPU 1401 accumu-
lates the evaluation points accumulated in the variable data
item iValue, in a variable data item iTotalValue correspond-
ing to No. n chord progression data item which is the current
process target.

Thereafter, the CPU 1401 increments the value of the
variable data item “i” by +1 in STEP S2321, and returns to
the determining process of STEP S2303, thereby proceeding
to the process on the next note of the input motif 108 (see
FIG. 10B).

If the suitability evaluation process on every note con-
nection rule relative to every note of the input motif 108
finishes, the result of the determination STEP S2303
becomes “NO”. Here, the end location of the process target
notes of the input motif 108 is originally the third note from
the final note of the input motif 108, and the value of the
variable data item “i” corresponding thereto is “(iNoteCnt-
1)-3”, that is, “iNoteCnt-4”. However, as shown by i=7 in
FIG. 10B, since the final process is performed with three

US 9,460,694 B2

33

notes, the value of the variable data item “i” corresponding
to the end location becomes “iNoteCnt-3”. Therefore, the
finish determination of STEP S2303 becomes a case where
the value of the variable data item “i” is not smaller than
iNoteCnt-2.

If the result of the determination of STEP S2303 becomes
“NO”, in STEP 82322, the CPU 1401 divides the value of
the variable data item iTotal Value by the number (iNoteCnt-
2) of processed notes of the input motif 108, thereby
performing normalization, and stores the division result, as
the matching level of No. n chord progression for the input
motif 108, in the variable data item doValue. Thereafter, the
CPU 1401 finishes the note-connectivity checking process
of the flow chart of FIG. 23, that is, STEP S2009 of FI1G. 20.

FIG. 24 is a flow chart illustrating a detailed example of
the melody generating process of STEP S1608 which is
performed next to the chord-progression selecting process of
STEP S1607 in the automatic composition process of FIG.
16.

First, in STEP 52401, the CPU 1401 initializes a variable
area of the RAM 1403.

Subsequently, in STEP 52402, the CPU 1401 reads a
music structure data item (see FIG. 6) corresponding to the
chord progression candidate selected by the chord-progres-
sion selecting process of STEP S1607 of FIG. 16, for
example, designated by the user, from the accompaniment/
chord-progression DB 103.

Subsequently, in STEP 52403, the CPU 1401 sets the
value of the variable data item “i” to an initial value “0”.
Thereafter, while the CPU increments the value of the
variable data item “1” in STEP 52409, with respect to the
phrase of each measure of the music structure data item
indicated by the variable data item “i”, the CPU automati-
cally generates a melody for the corresponding phrase with
reference to the input motif 108, the phrase sets (see FIG. 11)
registered in the phrase set DB 106 retained in the ROM
1402, and the rule DB 104 (see FIG. 9) retained in the ROM
1402, until it is determined in STEP S2404 that the end of
the music structure data item has been reached. The value of
the variable data item “i” is incremented from O, +1 by +1,
in STEP 5240, whereby the values of “Measure” items of the
music structure data item exemplified in FIG. 6 are sequen-
tially designated, and the individual records on the music
structure data item are sequentially designated.

Specifically, first, in STEP S2404, the CPU 1401 deter-
mines whether the end of the music structure data item has
been reached.

If the result of the determination of STEP S2404 is “NO”,
in STEP 52405, the CPU 1401 determines whether the
current measure of the music structure data item designated
by the variable data item “i”” coincides with a measure of the
input motif 108.

If the result of the determination of STEP 52405 is
“YES”, the CPU 1401 intactly outputs the input motif 108
as a part of the melody data 110 (see FIG. 1), for example,
to an output melody area on the RAM 1403.

If the result of the determination of STEP 52405 is “NO”,
in STEP 52406, the CPU 1401 determines whether the
current measure is the beginning measure of a refrain
melody.

If the result of the determination of STEP 52406 is “NO”,
in STEP 52407, the CPU 1401 performs a first melody
generating process.

Meanwhile, if the result of the determination of STEP
52406 is “YES”, in STEP S2408, the CPU 1401 performs a
second melody generating process.

73233
1

15

20

30

40

45

55

34

After the process of STEP 52407 or S2408, in STEP
52409, the CPU 1401 increments the variable data item *“i”
by +1. Thereafter, the CPU 1401 returns to the determining
process of STEP S2404.

FIG. 25 is a flow chart illustrating a detailed example of
the first melody generating process of STEP 52407 of FIG.
24.

In STEP 52501, the CPU 1401 determines whether a
phrase type including the current measure is the same as the
phrase type of the input motif 108. A phrase type including
the current measure can be determined by referring to a
“PartName[M]” item and a “iPartID[M]” item of a record
having a “Measure” item corresponding to the value of the
variable data item “i” and included in the music structure
data item exemplified in FIG. 6. The phrase type of the input
motif 108 is designated when the user inputs the input motif
108.

If the result of the determination of STEP 52501 is
“YES”, the CPU 1401 copies the melody of the input motif
108, as the melody of the current measure, in a predeter-
mined area of the RAM 1403. Thereafter, the CPU 1401
proceeds to a melody modifying process of STEP S2507.

If the result of the determination of STEP 52501 is “NO”,
in STEP 52503, with respect to the phrase type including the
current measure, the CPU 1401 determines whether a
melody has been already generated and the even numbers/
odd numbers of the measures coincide with each other.

If the result of the determination of STEP 52503 is
“YES”, in STEP S2504, the CPU 1401 copies the generated
melody as the melody of the current measure in a predeter-
mined area of the RAM 1403. Thereafter, the CPU 1401
proceeds to the melody modifying process of STEP S2507.

If a melody for the corresponding phrase has not been
generated yet (the result of the determination of STEP 52503
is “NO”), in STEP S2505, the CPU 1401 performs a
phrase-set-DB retrieval process. In the phrase-set-DB
retrieval process, the CPU 1401 extracts a phrase set cor-
responding to the input motif 108, from the phrase set DB
106.

Subsequently, in STEP S2506, the CPU 1401 copies the
melody of a phrase having the same type as the phrase type
including the current measure and included in the phrase set
retrieved in STEP S2505, in a predetermined area of RAM
1403. Thereafter, the CPU 1401 proceeds to the melody
modifying process of STEP S2507.

After the process of STEP S2502, S2504, or S2506, in
STEP 82507, the CPU 1401 performs the melody modifying
process of modifying the copied melody.

Thereafter, in STEP S2508, the CPU 1401 performs a
melody optimizing process of optimizing the pitch of each
note constituting the melody modified in STEP S2507. As a
result, the CPU 1401 automatically generates a melody of
the phrase of each measure represented by the music struc-
ture data item, and outputs the generated melody to the
output melody area of the RAM 1403.

FIG. 26 is a flow chart illustrating a detailed example of
the phrase-set-DB retrieval process of STEP S2505 of FIG.
25.

First, the CPU 1401 extracts the pitch sequence of the
input motif 108, and stores the pitch sequence in array
variable data items iMelodyB|[0] to iMelodyBJ[iLengthB-1]
retained in the RAM 1403. Here, in a variable data item
iLengthB, the length of the pitch sequence of the input motif
108 is stored.

Subsequently, in STEP S2602, the CPU 1401 sets the
value of the variable data item “k” to an initial value “0”.
Thereafter, while incrementing the value of the variable data

US 9,460,694 B2

35
item “k” in STEP S2609, the CPU 1401 repeatedly performs
a series of STEPS S2603 to S2609 on a phrase set (see FIG.
11A) designated by the variable data item “k”, until it is
determined in STEP S2603 that the end of the phrase set DB
106 (see FIG. 11A) has been reached.

In this series of processes, first, in STEP S2604, the CPU
1401 extracts the pitch sequence of a phrase corresponding
to the input motif 108, from the k-th phrase set represented
by the variable data item “k”, and stores the pitch sequence
in array variable data items iMelodyA[O] to iMelodyA
[iLengthA-1] retained in the RAM 1403. Here, a variable
data item ilengthA, the length of the pitch sequence of the
phase retained in the phrase set DB 106 is stored.

Subsequently, the CPU 1401 performs a DP (Dynamic
Programming) matching process between the array variable
data items iMelodyB[0] to iMelodyB[iLengthB-1] regarding
to the pitch sequence of the input motif 108 and set in STEP
S2601 and the array variable data items iMelodyA[O] to
iMelodyA[iLengthA-1] regarding to the pitch sequence of
the corresponding phrase included in the k-th phrase set
retained in the phrase set DB 106 and set in STEP S2604,
thereby calculating a distance evaluation value between
them, and stores the distance evaluation value in a variable
data item doDistance retained in the RAM 1403.

Subsequently, in STEP S2606, the CPU 1401 determines
whether a minimum distance evaluation value represented
by the variable data item doMin retained in the RAM 1403
is larger than the distance evaluation value doDistance
newly calculated by the DP matching process of STEP
S2605.

If the result of the determination STEP S2606 is “NO”, in
STEP S2607, the CPU 1401 stores the new distance evalu-
ation value stored in the variable data item doDistance, in a
variable data item doMin.

Subsequently, in STEP S2608, the CPU 1401 stores the
value of the variable data item “k” in a variable data item
iBestMochief retained in the RAM 1403.

If the result of the determination of STEP S2606 is
“YES”, the CPU 1401 skips the processes of STEPS S2607
and S2608.

Thereafter, the CPU 1401 increments the value of the
variable data item ‘“k” by +1, thereby proceeding to the
process on the next phrase set (see FIG. 11A) included in the
phrase set DB 106.

If the DP matching process between every phrase set
retained in the phrase set DB 106 and the input motif 108
finishes, whereby the result of the determination of the STEP
S2603 becomes “YES”, in STEP S2610, the CPU 1401
outputs a phrase set having a number represented by the
variable data item iBestMochief and retained in the phrase
set DB 106, to a predetermined area of the RAM 1403.
Thereafter, the CPU 1401 finishes the process of the flow
chart exemplified in FIG. 26, that is, the phrase-set-DB
retrieval process of STEP S2505 of FIG. 25.

FIG. 27 is a flow chart illustrating a detailed example of
the melody modifying process of STEP S2507 of FIG. 25.
This melody modifying process is performed based on pitch
shift or left/right reversing described above with reference to
FIGS. 12A and 12B.

First, in STEP S2701, the CPU 1401 stores an initial value
“0” in the variable “i” which is retained in the RAM 1403
and is for counting the number of notes of the melody
obtained by the copying process of FIG. 25. Thereafter,
while incrementing the value of the variable “i”, +1 by +1,
in STEP S2709, the CPU 1401 repeatedly performs a series
of STEPS S2702 to S2709 as long as it is determined in
STEP S2702 that the value of the variable “i” is smaller than

25

30

40

45

36

the value of the variable data item iNoteCnt representing the
number of notes of the melody.

In the repetitive process of STEPS S2702 to S2709, first,
in STEP S2702, the CPU 1401 acquires a modification type.
The modification type is “PITCH SHIFT” or “LEFT/RIGHT
REVERSING”, and the user can designate the modification
type by a switch (not specifically shown).

In a case where the modification type is “PITCH SHIFT”,
in STEP S2704, the CPU 1401 adds a predetermined value
to pitch data “note[i]—=iPit” retained in an iPit item of the
array variable data item note[i], thereby performing pitch
shift to raise pitches, for example, by two semitones as
described with respect to the reference symbol “1201” of
FIG. 12.

In a case where the modification type is “LEFT/RIGHT
REVERSING”, in STEP $2705, the CPU 1401 determines
whether the value of the variable data item “i” is smaller
than a value obtained by dividing the value the variable data
item iNoteCnt by 2.

In a case where the result of the determination of STEP
S2705 is “YES”, first, in STEP S2706, the CPU 1401 saves
the pitch data “note[i]—=iPit” retained in the iPit item of the
array variable data item note[i], in a variable “ip” retained in
the RAM 1403.

Subsequently, in STEP 82707, the CPU 1401 stores the
value of a pitch item “note[iNoteCnt-i-1]—=iPit” which is
the (iNoteCnt-i-1)-th array element, in the pitch item “note
[1]—=1Pit” which is the i-th array element.

Subsequently, in STEP S2708, the CPU 1401 loads the
original pitch item value saved in the variable data item “ip”
into the pitch item “note[iNoteCnt-i-1]—iPit” which is the
(iNoteCnt-i-1)-th array element.

In a case where the result of the determination of STEP
82705 is “NO”, the CPU 1401 skips the processes of STEPS
S2706, S2707, and S2708.

After the process of STEP S2704 or S2708, or after the
result of the determination of STEP S2705 becomes “NO”,
in STEP S2709, the CPU 1401 increments the value of the
variable data item “i” by +1, thereby proceeding to the
process on the next note, and returns to the determining
process of STEP S2702.

By the above described process, the left/right reversing
process described with respect to the reference symbol
“1202” of FIG. 12A is implemented.

FIG. 28 is a flow chart illustrating a detailed example of
the melody optimizing process of STEP S2508 of FIG. 25.
This process implements the pitch optimizing process
described with reference to FIG. 13.

First, in STEP S2801, the CPU 1401 calculates the total
number of combinations of different pitch candidates by the
following expression.

IWnum=MAX_NOTE_CANDIDATE"iNoteCnt

ey

Here, the operator represents a power operator. Also,
a constant data item MAX _NOTE_CANDIDATE retained
in the ROM 1402 represents the number of different pitch
candidates ipitd[0] to ipitd[4] relative to one note shown in
FIG. 13, and is 5 in this example.

Subsequently, in STEP S2802, the CPU 1401 sets a
variable data item iCnt for counting different pitch candi-
dates, to an initial value “0”. Thereafter, while incrementing
the variable data item iCnt, +1 by +1, in STEP S2818, the
CPU 1401 evaluates the validity of an input melody while
changing the pitches of the corresponding melody, as long as
it is determined in STEP S2803 that the value of the variable

US 9,460,694 B2

37

data item iCnt is smaller than the total number of combi-
nations of different pitch candidates calculated in STEP
S2801.

Whenever the value of the variable data item iCnt is
incremented, the CPU 1401 performs a series of processes
of STEPS S2805 to S2817.

First, in STEP S2805, the CPU 1401 stores an initial value
“0” in the variable “i” which is retained in the RAM 1403
and is for counting the number of notes of the melody
obtained by the copying process of FIG. 25. Thereafter,
while incrementing the value of the variable “i”, +1 by +1,
in STEP S2813, the CPU 1401 repeatedly performs a series
of STEPS S2806 to S2813 as long as it is determined in
STEP S2806 that the value of the variable “i” is smaller than
the value of the variable data item iNoteCnt representing the
number of notes of the melody. In this repetitive process,
pitch correction is performed on every note of the melody by
STEPS S2807, 52808, and S2809.

First, in STEP S2807, the CPU 1401 obtains a pitch
correction value in a variable data item ipitdev retained in
the RAM 1403 by calculating the following expression.

Ipitdev=ipitd[((Cn/MAX_NOTE_CANDIDATE")
mod MAX_NOTE_CANDIDATE]

Here, “mod” represents remainder calculation.

Subsequently, in STEP S2809, the CPU 1401 adds the
value of the variable data item ipitdev calculated in STEP
S2807, to the pitch item value “note[i]—iPit” of the input
melody, and stores the obtained result in the array variable
data item ipit[i] representing the pitch information sequence.

Subsequently, in the same way as that of STEPS S2005 to
S2007 of FIG. 20 described above, the CPU performs a
note-type acquiring process of STEP S2810 and an adjacent
tone calculating process of STEPS S2811 and S2812 on the
array variable data item ipit[i] representing the pitch infor-
mation sequence.

If the CPU 1401 completes pitch correction correspond-
ing to the current value of the variable data item iCnt, on
every note constituting the input melody, the result of the
determination STEP S2806 becomes “NO”. As a result, in
STEP S2814, the CPU 1401 performs the same note-con-
nectivity checking process as the process of FIG. 23
described above, on the note type and adjacent tone of each
note constituting the melody and calculated in STEPS S2810
to S2812. At this time, the chord information of a chord
progression data item corresponding to each measure of the
input melody is extracted and used.

Subsequently, in STEP S2815, the CPU 1401 determines
whether the value of the matching level newly obtained in
the variable data item doValue in the note-connectivity
checking process of STEP S2814 is larger than the value of
the best matching level held in a variable data item
iMaxValue.

If the result of the determination of STEP S2815 is
“YES”, the CPU 1401 replaces the value of the variable data
item iMaxValue with the value of the variable data item
doValue in STEP S2816, and replaces the value of the
variable data item iMaxCnt with the value of the variable
data item iCnt in STEP S2817.

Thereafter, the CPU 1401 increments the value of the
variable data item iCnt by +1 in STEP S2818, and returns to
the determining process of STEP S2803.

If the above described operation is repeatedly performed
on the variable data item iCnt which is sequentially incre-
mented, and as a result, the note-connectivity checking

20

25

40

45

50

55

38

process on every combination of different pitch candidates is
completed, the result of the determination of STEP S2803
becomes “NO”.

As aresult, in STEP S2819, the CPU 1401 stores an initial
value “0” in the variable “i”. Thereafter, while incrementing
the value of the variable “i”, +1 by +1, in STEP S2823, the
CPU repeatedly performs a series of processes of STEPS
S2820 to S2823, as long as it is determined in STEP S2820
that the value of the variable “i” is smaller than the value of
the variable data item iNoteCnt representing the number of
notes of the melody. In this repetitive process, pitch correc-
tion, that is, optimization using the best value obtained in the
variable data item iMaxCnt is performed on every note of
the melody.

Specifically, after the finish determination of STEP S2820
is performed, in STEP S2821, the CPU 1401 obtains an
optimal pitch correction value in the array variable data item
ipit[i] of the pitch information sequence by calculating the
following expression.

ipit[{]=note[i/—iPit+ipitd [((MaxCnt/(MAX_NOTE_
CANDIDATE)mod MAX_NOTE_CANDI-
DATE)]

Subsequently, in STEP S2822, the CPU 1401 overwrites
the pitch item value “note[i]—iPit” of the note data of the
input melody with the value of the array variable data item
ipit[i] of the pitch information sequence.

Finally, the CPU 1401 increments the value of the vari-
able “1” in STEP S2823, and then returns to the determining
process of STEP S2820.

If the above described process on every note data item
constituting the input melody is completed, the result of the
determination STEP S2820 becomes “NO”. Therefore, the
CPU 1401 finishes the process exemplified in the flow chart
of FIG. 28, that is, the melody optimizing process of STEP
S2508 of FIG. 25.

FIG. 29 is a flow chart illustrating a detailed example of
the second melody generating process (refrain beginning
melody generating process) of FIG. 24.

First, in STEP 52901, the CPU 1401 determines whether
a refrain beginning melody has been generated.

If a refrain beginning melody has not been generated yet,
and thus the result of the determination of STEP 52901
becomes “NO”, in STEP 52902, the CPU 1401 performs a
phrase-set-DB retrieval process. This process is the same as
the process of FIG. 26 corresponding to STEP S2505 of FIG.
5. By this phrase-set-DB retrieval process, the CPU 1401
extracts a phrase set corresponding to the input motif 108,
from the phrase set DB 106.

Subsequently, in STEP 52903, the CPU 1401 copies the
melody of a refrain beginning (C melody) phrase included in
the phrase set retrieved in STEP 52902, in a predetermined
area of the RAM 1403.

Subsequently, in STEP 52904, the CPU 1401 performs the
same melody optimizing process of FIG. 28 as that of the
STEP S2508 of FIG. 25, on the melody obtained in STEP
52903.

The CPU 1401 stores the melody data obtained in STEP
52904 and having optimal pitches, as a part of the melody
data 110, in the output melody area of the RAM 1403.
Thereafter, the CPU 1401 finishes the process exemplified in
the flow chart of FIG. 29, that is, the second melody
generating process (refrain beginning melody generating
process) of FIG. 24.

If a refrain beginning melody has been generated, and
thus the result of the determination of STEP 52901 becomes
“YES”, in STEP 52905, the CPU 1401 copies the generated

US 9,460,694 B2

39

refrain beginning melody, as the melody of the current
measure, in the output melody area of the RAM 1403.
Thereafter, the CPU 1401 finishes the process exemplified in
the flow chart of FIG. 29, that is, the second melody
generating process (refrain beginning melody generating
process) of FIG. 24.

According to the above described embodiment, it
becomes possible to quantify the correspondence relation
between the input motif 108 and each chord progression data
item, as the matching level, such that it is possible to
appropriately select chord progression data items suitable
for the input motif 108 based on the matching level. There-
fore, it becomes possible to generate natural music.

What is claimed is:

1. An automatic composition apparatus comprising:

a processing unit that performs (i) a receiving process of
receiving a phrase including a plurality of note data
items as a received motif and receiving a type of the
phrase, (ii) a retrieving process of retrieving a phrase
set from a phrase set database and (iii) a melody
generating process of generating a melody based on the
retrieved phrase set,

wherein:

the phrase set includes phrases having the same type as
the received type and having relatively high matching
levels for the received motif, and

the phrase set database stores a plurality of phrase sets
each of which is a combination of a plurality of phrases
of different types.

2. The automatic composition apparatus according to

claim 1, further comprising:

a memory that stores music structure data items each of
which represents an order of a combination of phrases
of different types,

wherein the processing unit performs, as the retrieving
process, a process of designating phrase types based on
the order of the music structure data item stored in the
memory.

3. The automatic composition apparatus according to

claim 1, wherein:

each of the phrase sets includes phrases including any one
of a first melody, a second melody following the first
melody, and a refrain melody, as different types of
phrases.

4. The automatic composition apparatus according to

claim 1, wherein:

in a case where the processing unit designates a phrase of
the same type as the type of the phrase received as the
received motif as the retrieving process, the processing
unit performs, as the melody generating process, a
process of generating a new melody based on the
phrase received as the received motif, instead of
phrases included in the retrieved phrase set.

5. The automatic composition apparatus according to

claim 1, wherein:

the processing unit performs, as the retrieving process, a
process of comparing pitch sequences of phases of the
same type as the type of the phrase received as the
received motif, with a pitch sequence of the phrase

10

15

20

25

30

35

40

45

50

55

40

received as the received motif, by using a dynamic
programming matching process, and a process of
retrieving a phrase set including a phrase most similar
to the pitch sequence of the phrase received as the
received motif, from the phrase set database.

6. The automatic composition apparatus according to
claim 1, wherein:

the processing unit performs, as the melody generating

process, a modifying process of modifying phrases
included in the retrieved phrase set.

7. The automatic composition apparatus according to
claim 6, wherein:

the processing unit performs, as the modifying process, a

process of shifting pitches included in the individual
note data items constituting the phrases, by a predeter-
mined value.

8. The automatic composition apparatus according to
claim 6, wherein:

the processing unit performs, as the modifying process, a

process of changing orders of the note data items
constituting the phrases.

9. The automatic composition apparatus according to
claim 1, further comprising:

at least one of a reproducing unit that reproduces a piece

of music based on the melody generated by the pro-
cessing unit and a score display unit that displays a
score representing the piece of music based on the
melody generated by the processing unit.

10. An automatic composition method of an automatic
composition apparatus including a processing unit, the auto-
matic composition method being performed by the process-
ing unit and comprising:

receiving a phrase including a plurality of note data items

as a received motif and receiving a type of the phrase;
retrieving a phrase set from a phrase set database; and
generating a melody based on the retrieved phrase set,
wherein:

the phrase set includes phrases having the same type as

the received type and having relatively high matching
levels for the received motif, and

the phrase set database stores a plurality of phrase sets

each of which is a combination of a plurality of phrases
of different types.

11. A non-transitory storage medium storing a program
which causes an automatic composition apparatus, which
includes a processing unit, to perform processes comprising:

receiving a phrase including a plurality of note data items

as a received motif, and receiving a type of the phrase;
retrieving a phrase set from a phrase set database; and
generating a melody based on the retrieved phrase set,
wherein:

the phrase set includes phrases having the same type as

the received type and having relatively high matching
levels for the received motif, and

the phrase set database stores a plurality of phrase sets

each of which is a combination of a plurality of phrases
of different types.

#* #* #* #* #*

